Design Guide VLT ${ }^{\circledR}$ AQUA Drive FC 202

110-1400 kW

Contents

Contents

1 How to Read this Design Guide 7
2 Introduction 11
2.1 Safety 11
2.2 Software Version 12
2.3 CE Labelling 12
2.4 Air Humidity 13
2.5 Aggressive Environments 13
2.6 Vibration and Shock 14
2.7 Safe Torque Off (STO) 14
2.8 Frequency Converter Benefits 14
2.9 Control Structures 18
2.9.1 Control Principle 18
2.9.2 Control Structure Open Loop 22
2.9.3 Local (Hand On) and Remote (Auto On) Control 22
2.9.4 Control Structure Closed Loop 23
2.9.5 Feedback Handling 24
2.9.6 Feedback Conversion 25
2.9.7 Reference Handling 26
2.9.8 Example of Closed Loop PID Control 27
2.9.9 Programming Order 28
2.9.10 Tuning the Closed Loop Controller 29
2.9.11 Manual PID Adjustment 29
2.10 General Aspects of EMC 30
2.10.1 General Aspects of EMC Emissions 30
2.10.2 Emission Requirements 31
2.10.3 EMC Test Results (Emission) 32
2.10.4 General Aspects of Harmonics Emission 32
2.10.5 Harmonics Emission Requirements 33
2.10.6 Harmonics Test Results (Emission) 33
2.11 Immunity Requirements 33
2.12 Galvanic Isolation (PELV) 35
2.13 Earth Leakage Current 35
2.14 Control with Brake Function 36
2.15 Mechanical Brake Control 37
2.16 Extreme Running Conditions 37
2.16.1 Motor Thermal Protection 38
3 Selection 41
3.1 Options and Accessories 41

Contents Design Guide
3.1.1 General Purpose Input Output Module MCB 101 41
3.1.2 Digital Inputs - Terminal X30/1-4 42
3.1.3 Analog Voltage Inputs - Terminal X30/10-12 42
3.1.4 Digital Outputs - Terminal X30/5-7 42
3.1.5 Analog Outputs - Terminal X30/5+8 42
3.1.6 Relay Option MCB 105 43
3.1.7 24 V Back-Up Option MCB 107 (Option D) 44
3.1.8 Analog I/O option MCB 109 44
3.1.9 Extended Cascade Controller MCO 101 and Advanced Cascade Controller, MCO 102 46
3.1.10 Extended Cascade Controller MCO 101 46
3.1.11 Brake Resistors 47
3.1.12 Remote Mounting Kit for LCP 48
3.1.13 Input Filters 48
3.1.14 Output Filters 49
3.2 High Power Options 49
3.2.1 Installation of Back Channel Cooling Kit in Rittal Enclosures 50
3.2.2 Outside Installation/NEMA 3R Kit for Rittal Enclosures 51
3.2.3 Installation on Pedestal 52
3.2.4 Installation of Input Plate Options 53
3.2.5 Installation of Mains Shield for Frequency Converters 54
3.2.6 D-frame Options 54
3.2.6. Load Share Terminals 54
3.2.6.2 Regeneration Terminals 54
3.2.6.3 Anti-Condensation Heater 54
3.2.6.4 Brake Chopper 54
3.2.6.5 Mains Shield 54
3.2.6.6 Ruggedized Printed Circuit Boards 54
3.2.6.7 Heat Sink Access Panel 54
3.2.6.8 Mains Disconnect 54
3.2.6.9 Contactor 55
3.2.6.10 Circuit Breaker 55
3.2.7 Frame Size F Options 55
4 How to Order 57
4.1 Ordering Form 57
4.1.1 Drive Configurator 57
4.1.2 Type Code String 57
4.2 Ordering Numbers 62
4.2.1 Ordering Numbers: Options and Accessories 62
4.2.2 Advanced Harmonic Filters 63

Contents Design Guide
4.2.3 Sine-Wave Filter Modules, 380-690 V AC 69
4.2.4 Ordering Numbers: $\mathrm{dU} / \mathrm{dt}$ Filters 71
4.2.5 Ordering Numbers: Brake Resistors 72
5 How to Install 73
5.1 Mechanical Installation 73
5.1.1 Mechanical Mounting 76
5.1.2 Pedestal Installation of D-frames 76
5.1.3 Pedestal Installation of F-frames 77
5.1.4 Safety Requirements of Mechanical Installation 77
5.2 Pre-installation 78
5.2.1 Planning the Installation Site 78
5.2.2 Receiving the Frequency Converter 78
5.2.3 Transportation and Unpacking 79
5.2.4 Lifting 79
5.2.5 Tools Needed 81
5.2.6 General Considerations 81
5.2.7 Cooling and Airflow 83
5.2.8 Gland/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12) 85
5.2.9 Gland/Conduit Entry, 12-Pulse - IP21 (NEMA 1) and IP54 (NEMA12) 87
5.3 Electrical Installation 90
5.3.1 Cables General 90
5.3.2 Preparing Gland Plates for Cables 90
5.3.3 Connection to Mains and Earthing 90
5.3.4 Motor Cable Connection 91
5.3.5 Motor Cables 91
5.3.6 Electrical Installation of Motor Cables 92
5.3.7 Fuses 93
5.3.8 Fuse Specifications 93
5.3.9 Access to Control Terminals 94
5.3.10 Control Terminals 94
5.3.11 Control Cable Terminals 94
5.3.12 Basic Wiring Example 95
5.3.13 Control Cable Length 96
5.3.14 Electrical Installation, Control Cables 96
5.3.15 12-Pulse Control Cables 99
5.3.16 Switches S201, S202 and S801 101
5.4 Connections - Frame Sizes D, E and F 102
5.4.1 Torque Settings 102
5.4.2 Power Connections 103
5.4.3 Power Connections 12-Pulse Frequency Converters 127

Contents
5.4.4 Shielding against Electrical Noise 129
5.4.5 External Fan Power Supply 129
5.5 Input Options 130
5.5.1 Mains Disconnects 130
5.5.2 Circuit Breakers 131
5.5.3 Mains Contactors 131
5.5.4 Relay Output D Frame 132
5.5.5 Relay Output E \& F-Frame 132
5.6 Final Set-Up and Test 133
5.7 Installation of Miscellaneous Connections 133
5.7.1 RS-485 Bus Connection 133
5.7.2 How to Connect a PC to the Unit 134
5.7.3 PC Software Tools 134
5.7.3.1 MCT 10 134
5.7.3.2 MCT 31 135
5.8 Safety 135
5.8.1 High Voltage Test 135
5.8.2 Safety Earth Connection 135
5.9 EMC-correct Installation 135
5.9.1 Electrical Installation - EMC Precautions 135
5.9.2 Use of EMC-Correct Cables 137
5.9.3 Earthing of Screened/Armoured Control Cables 137
5.10 Residual Current Device 139
6 Application Examples 140
6.1 Typical Application Examples 140
6.1.1 Start/Stop 140
6.1.2 Pulse Start/Stop 140
6.1.3 Potentiometer Reference 141
6.1.4 Automatic Motor Adaptation (AMA) 141
6.1.5 BASIC Cascade Controller 143
6.1.6 Pump Staging with Lead Pump Alternation 144
6.1.7 System Status and Operation 144
6.1.8 Cascade Controller Wiring Diagram 145
6.1.9 Fixed Variable Speed Pump Wiring Diagram 146
6.1.10 Lead Pump Alternation Wiring Diagram 146
7 RS-485 Installation and Set-up 148
7.1 Introduction 148
7.1.1 Hardware Setup 148
7.1.2 Parameter Settings for Modbus Communication 148

Contents Design Guide
7.1.3 EMC Precautions 148
7.2 FC Protocol Overview 149
7.3 Network Connection 150
7.4 FC Protocol Message Framing Structure 150
7.4.1 Content of a Character (Byte) 150
7.4.2 Telegram Structure 150
7.4.3 Telegram Length (LGE) 150
7.4.4 Frequency Converter Address (ADR) 151
7.4.5 Data Control Byte (BCC) 151
7.4.6 The Data Field 151
7.4.7 The PKE Field 152
7.4.8 Parameter Number (PNU) 152
7.4.9 Index (IND) 152
7.4.10 Parameter Value (PWE) 152
7.4.11 Data Types Supported 153
7.4.12 Conversion 153
7.4.13 Process Words (PCD) 153
7.5 Examples 154
7.5.1 Writing a Parameter Value 154
7.5.2 Reading a Parameter Value 154
7.6 Modbus RTU Overview 154
7.6.1 Assumptions 154
7.6.2 Prerequisite Knowledge 154
7.6.3 Modbus RTU Overview 154
7.6.4 Frequency Converter with Modbus RTU 155
7.7 Network Configuration 155
7.7.1 Frequency Converter with Modbus RTU 155
7.8 Modbus RTU Message Framing Structure 155
7.8.1 Frequency Converter with Modbus RTU 155
7.8.2 Modbus RTU Message Structure 155
7.8.3 Start/Stop Field 156
7.8.4 Address Field 156
7.8.5 Function Field 156
7.8.6 Data Field 156
7.8.7 CRC Check Field 156
7.8.8 Coil Register Addressing 157
7.8.9 Function Codes Supported by Modbus RTU 159
7.9 How to Access Parameters 160
7.9.1 Parameter Handling 160
7.9.2 Storage of Data 160

Contents

Design Guide

7.9.3 IND 160
7.9.4 Text Blocks 160
7.9.5 Conversion Factor 160
7.9.6 Parameter Values 160
7.10 Examples 160
7.10.1 Read Coil Status (01 HEX) 160
7.10.2 Force/Write Single Coil (05 HEX) 161
7.10.3 Force/Write Multiple Coils (OF HEX) 161
7.10.4 Read Holding Registers (03 HEX) 161
7.10.5 Preset Single Register (06 HEX) 162
7.11 Danfoss FC Control Profile 162
7.11.1 Control Word According to FC Profile 162
7.11.2 Status Word According to FC Profile 164
7.11.3 Bus Speed Reference Value 165
8 General Specifications and Troubleshooting 166
8.1 General Specifications 166
8.1.1 Mains Supply $3 \times 380-480 \mathrm{~V}$ AC 166
8.1.2 Mains Supply $3 \times 525-690$ V AC 169
8.1.3 12-Pulse Specifications 175
8.2 Efficiency 184
8.3 Acoustic Noise 184
8.4 Peak Voltage on Motor 184
8.5 Special Conditions 185
8.5.1 Purpose of Derating 185
8.5.2 Derating for Low Air Pressure 185
8.5.3 Derating for Running at Low Speed 186
8.5.4 Automatic Adaptations to Ensure Performance 187
8.5.5 Derating for Ambient Temperature 187
8.6 Troubleshooting 188
8.6.1 Alarm Words 193
8.6.2 Warning Words 194
8.6.3 Extended Status Words 195
8.6.4 Warning and Alarm Introduction 196
Index 202

1 How to Read this Design Guide

1.1.1 Copyright, Limitation of Liability and Revision Rights

This publication contains information proprietary to Danfoss. By accepting and using this manual, the user agrees to use the information contained herein solely for operating equipment from Danfoss or equipment from other vendors if such equipment is intended for communication with Danfoss equipment over a serial communication link. This publication is protected under the Copyright laws of Denmark and most other countries.

Danfoss does not warrant that a software program produced according to the guidelines provided in this manual functions properly in every physical, hardware, or software environment.

Although Danfoss has tested and reviewed the documentation within this manual, Danfoss makes no warranty or representation, neither expressed nor implied, with respect to this documentation, including its quality, performance, or fitness for a particular purpose.

In no event shall Danfoss be liable for direct, indirect, special, incidental, or consequential damages arising out of the use, or the inability to use information contained in this manual, even if advised of the possibility of such damages. In particular, Danfoss is not responsible for any costs, including but not limited to costs incurred as a result of lost profits or revenue, loss or damage of equipment, loss of computer programs, loss of data, the costs to substitute these losses, or any claims by third parties.

Danfoss reserves the right to revise this publication at any time and to change its contents without prior notice or any obligation to notify former or present users of such revisions or changes.

1.1.2 Available Literature

- $\quad V^{(1}{ }^{\circledR}$ AQUA Drive FC 202, $0.25-90 \mathrm{~kW}$, Operating Instructions provide the necessary information for getting the frequency converter up and running.
- $\quad V^{\circledR}{ }^{\circledR}$ AQUA Drive FC 202, 110-400 kW, D frame Operating Instructions provide installation, startup, and basic information for the newest D frame models.
- \quad VLT ${ }^{\circledR}$ AQUA Drive FC 202 High Power Operating Instructions provide the necessary information for
getting the HP frequency converter up and running.
- \quad VLT ${ }^{\circledR}$ AQUA Drive FC $202,110-1400 \mathrm{~kW}$, Design Guide provides all technical information about the frame D, E, and F frequency converter and customer design and applications.
- $\quad \mathrm{VLT}^{\circledR}$ AQUA Drive FC 202 Programming Guide provides information on how to programme and includes complete parameter descriptions.
- VLT ${ }^{\circledR}$ AQUA Drive FC 202 Profibus.
- VLT ${ }^{\circledR}$ AQUA Drive FC 202 DeviceNet.
- Output Filters Design Guide.
- VLT ${ }^{\circledR}$ AQUA Drive FC 202 Cascade Controller.
- Application Note: Submersible Pump Application
- Application Note: Master/Follower Operation Application
- Application Note: Drive Closed Loop and Sleep Mode
- Instruction: Analog I/O Option MCB109
- Instruction: Panel through mount kit
- $\quad \mathrm{VLT}^{\circledR}$ Active Filter Operating Instruction.
- $\quad V L T^{\circledR}$ Frequency Converters Safe Torque Off Operating Instructions

Danfoss technical literature is also available online at www.danfoss.com/BusinessAreas/DrivesSolutions/Documentations/Technical+Documentation.htm.

The following symbols are used in this document:

AWARNING

Indicates a potentially hazardous situation which could result in death or serious injury.

ACAUTION

Indicates a potentially hazardous situation which could result in minor or moderate injury. It can also be used to alert against unsafe practices.

NOTICE

Indicates important information, including situations that can result in damage to equipment or property.

How to Read this Design Gui...

1.1.3 Abbreviations

Alternating current	AC
American wire gauge	AWG
Ampere/AMP	A
Automatic Motor Adaptation	AMA
Current limit	lıim
Degrees Celsius	${ }^{\circ} \mathrm{C}$
Direct current	DC
Drive Dependent	D-TYPE
Electro Magnetic Compatibility	EMC
Electronic Thermal Relay	ETR
Frequency converter	FC
Gram	g
Hertz	Hz
Horsepower	hp
Kilohertz	kHz
Local Control Panel	LCP
Meter	m
Millihenry Inductance	mH
Milliampere	mA
Millisecond	ms
Minute	min
Motion Control Tool	MCT
Nanofarad	nF
Newton Meters	Nm
Nominal motor current	$\mathrm{Im}_{\mathrm{N}, \mathrm{N}}$
Nominal motor frequency	$\mathrm{f}_{\mathrm{M}, \mathrm{N}}$
Nominal motor power	$\mathrm{P}_{\mathrm{M}, \mathrm{N}}$
Nominal motor voltage	$\mathrm{U}_{\mathrm{M}, \mathrm{N}}$
Permanent Magnet motor	PM motor
Protective Extra Low Voltage	PELV
Printed Circuit Board	PCB
Rated Inverter Output Current	linv
Revolutions Per Minute	RPM
Regenerative terminals	Regen
Second	sec.
Synchronous Motor Speed	n_{s}
Torque limit	TLIM
Volts	V
The maximum output current	IvLt,max
The rated output current supplied by the frequency converter	IvLt,N

Table 1.1 Abbreviations

1.1.4 Definitions

Frequency converter:

Input:
IvLt,max
The maximum output current.

Ivit,N
The rated output current supplied by the frequency converter.

UvLt, max
The maximum output voltage.

Control command

Stop the connected motor with LCP and the digital inputs. Functions are divided into two groups.
Functions in group 1 have higher priority than functions in group 2.

Group 1	Reset, Coasting stop, Reset and Coasting stop, Quick- stop, DC braking, Stop and the "Off" key.
Group 2	Start, Pulse start, Reversing, Start reversing, Jog, and Freeze output

Table 1.2 Control Command

Motor:

fog
The motor frequency when the jog function is activated (via digital terminals).
f_{M}
The motor frequency.
$f_{\text {MAX }}$
The maximum motor frequency.
$f_{\text {MIN }}$
The minimum motor frequency.
$\mathrm{f}_{\mathrm{M}, \mathrm{N}}$
The rated motor frequency (nameplate data).
I_{M}
The motor current.
$\mathrm{l}_{\mathrm{M}, \mathrm{N}}$
The rated motor current (nameplate data).
$\mathbf{n}_{\mathrm{M}, \mathrm{N}}$
The rated motor speed (nameplate data).
$\mathrm{P}_{\mathrm{M}, \mathrm{N}}$
The rated motor power (nameplate data).
$\mathrm{T}_{\mathrm{M}, \mathrm{N}}$
The rated torque (motor).
U_{M}
The instantaneous motor voltage.
$\mathrm{U}_{\mathrm{M}, \mathrm{N}}$
The rated motor voltage (nameplate data).
ПvLt
The efficiency of the frequency converter is defined as the ratio between the power output and the power input.

Start-disable command

A stop command belonging to the group 1 control commands - see this group.

Stop command

See Control Command.

How to Read this Design Gui..

References:

Analog Reference

A signal transmitted to the analog inputs 53 or 54 , can be voltage or current.

Bus Reference

A signal transmitted to the serial communication port (FC port).

Preset Reference

A defined preset reference from -100% to $+100 \%$ of the reference range. Selection of eight preset references via the digital terminals.

Pulse Reference

A pulse frequency signal transmitted to the digital inputs (terminal 29 or 33).

Refmax

Determines the relationship between the reference input at 100% full scale value (typically $10 \mathrm{~V}, 20 \mathrm{~mA}$) and the resulting reference. The maximum reference value set in 3-03 Maximum Reference.

Ref $_{\text {min }}$

Determines the relationship between the reference input at 0% value (typically $0 \mathrm{~V}, 0 \mathrm{~mA}, 4 \mathrm{~mA}$) and the resulting reference. The minimum reference value set in 3-02 Minimum Reference.

Miscellaneous:

Analog Inputs

The analog inputs are used for controlling various functions of the frequency converter.
There are two types of analog inputs:
Current input, $0-20 \mathrm{~mA}$, and $4-20 \mathrm{~mA}$
Voltage input, 0-10 V DC.

Analog Outputs

The analog outputs can supply a signal of $0-20 \mathrm{~mA}, 4-20$ mA , or a digital signal.

Automatic Motor Adaptation, AMA

AMA algorithm determines the electrical parameters for the connected motor at standstill.

Brake Resistor

The brake resistor is a module capable of absorbing the brake power generated in regenerative braking. This regenerative braking power increases the intermediate circuit voltage and a brake chopper ensures that the power is transmitted to the brake resistor.

CT Characteristics

Constant torque characteristics used for positive displacement pumps and blowers.

Digital Inputs

The digital inputs can be used for controlling various functions of the frequency converter.

Digital Outputs

The drive features two solid-state outputs that can supply a 24 V DC (max. 40 mA) signal.

DSP
Digital Signal Processor.

Relay Outputs

The frequency converter features two programmable relay outputs.

ETR
Electronic Thermal Relay is a thermal load calculation based on present load and time. Its purpose is to estimate the motor temperature.

GLCP

Graphical Local Control Panel (LCP 102)

Initialising

If initialising is carried out (14-22 Operation Mode), the programmable parameters of the frequency converter return to their default settings.

Intermittent Duty Cycle

An intermittent duty rating refers to a sequence of duty cycles. Each cycle consists of an on-load and an off-load period. The operation can be either periodic duty or noneperiodic duty.

LCP

The Local Control Panel (LCP) makes up a complete interface for control and programming of the frequency converter. The control panel is detachable and can be installed up to 3 metres from the frequency converter, for example, in a front panel with the installation kit option. The Local Control Panel is available in two versions:

- Numerical LCP 101 (NLCP)
- Graphical LCP 102 (GLCP)

Isb

Least significant bit.

MCM

Short for Mille Circular Mil, an American measuring unit for cable cross-section. 1 MCM $\equiv 0.5067 \mathrm{~mm}^{2}$.
msb
Most significant bit.

NLCP

Numerical Local Control Panel LCP 101

On-line/Off-line Parameters

Changes to on-line parameters are activated immediately after the data value is changed. Enter [OK] to activate changes to off-line parameters.

PID Controller

The PID controller maintains the desired speed, pressure, temperature by adjusting the output frequency to match the varying load.
RCD
Residual Current Device.

Set-up

Save parameter settings in 4 set-ups. Change between the 4 parameter set-ups and edit one set-up, while another set-up is active.

SFAVM

Switching pattern called Stator Flux oriented Asynchronous Vector Modulation (14-00 Switching Pattern).

Slip Compensation

The frequency converter compensates for the motor slip by giving the frequency a supplement that follows the measured motor load keeping the motor speed almost constant.

Smart Logic Control (SLC)

The SLC is a sequence of user-defined actions executed when the associated user-defined events are evaluated as true by the SLC.

Thermistor

A temperature-dependent resistor placed where the temperature is monitored (frequency converter or motor).

Trip

A state entered in fault situations, for example, the frequency converter is subject to an over-temperature or when the frequency converter is protecting the motor process or mechanism. Restart is prevented until the cause of the fault has disappeared and the trip state is cancelled by activating reset or, in some cases, by being programmed to reset automatically. Do not use trip for personal safety.

Trip Locked

A state entered in fault situations when the frequency converter is protecting itself and requiring physical intervention, for example, the frequency converter is subject to a short circuit on the output. A locked trip can only be cancelled by cutting off mains, removing the cause of the fault, and reconnecting the frequency converter. Restart is prevented until the trip state is cancelled by activating reset or, in some cases, by being programmed to reset automatically. Do not use trip lock for personal safety.

VT Characteristics

Variable torque characteristics used for pumps and fans.

VVC ${ }^{+}$

If compared with standard voltage/frequency ratio control, Voltage Vector Control $\left(\mathrm{VVC}^{+}\right)$improves the dynamics and the stability, both when the speed reference is changed and in relation to the load torque.

60° AVM

Switching pattern called 60° Asynchronous Vector Modulation (14-00 Switching Pattern).

1.1.5 Power Factor

The power factor is the relation between I_{1} and $l_{\text {RMs }}$.

Power factor $=\frac{\sqrt{3} \times U \times \Lambda \times \cos \varphi}{\sqrt{3} \times U \times \text { IRMS }}$
The power factor for 3-phase control:

$$
=\frac{h \times \cos \varphi 1}{I_{\text {RMS }}}=\frac{h}{I_{\text {RMS }}} \text { since } \cos \varphi 1=1
$$

The power factor indicates to which extent the frequency converter imposes a load on the mains supply. The lower the power factor, the higher the IRMS for the same kW performance.

IRMS $=\sqrt{P_{1}^{2}+I_{5}^{2}+1_{7}^{2}+\cdots+l_{n}^{2}}$
In addition, a high power factor indicates that the different harmonic currents are low.
The built-in DC coils produce a high power factor, which reduces the imposed load on the mains supply.

Introduction

2 Introduction

2.1 Safety

AWARNING

HIGH VOLTAGE

Frequency converters contain high voltage when connected to AC mains input, DC power supply, or load sharing. Failure to perform installation, start-up, and maintenance by qualified personnel can result in death or serious injury.

- Installation, start-up, and maintenance must be performed by qualified personnel only.

AWARNING

DISCHARGE TIME

The frequency converter contains DC-link capacitors, which can remain charged even when the frequency converter is not powered. Failure to wait the specified time after power has been removed before performing service or repair work, can result in death or serious injury.

- Stop motor.
- Disconnect AC mains and remote DC-link power supplies, including battery back-ups, UPS, and DC-link connections to other frequency converters.
- Disconnect or lock PM motor.
- Wait for the capacitors to discharge fully, before performing any service or repair work. The duration of waiting time is specified in Table 2.1.

Voltage [V]	Power range [kW]	Minimum waiting time (minutes)
$380-480$	$110-315$	20
$380-480$	$45-400$	20
$525-690$	$315-1000$	40
$525-690$	$450-1200$	30
High voltage can be present even when the warning LED		
indicator lights are off.		

[^0]
AWARNING
 LEAKAGE CURRENT HAZARD
 Leakage currents exceed 3.5 mA . Failure to ground the frequency converter properly can result in death or serious injury.

- Ensure the correct grounding of the equipment by a certified electrical installer.

AWARNING

UNINTENDED START

When the frequency converter is connected to AC mains, DC power supply, or load sharing, the motor may start at any time. Unintended start during programming, service or repair work can result in death, serious injury, or property damage. The motor can start by means of an external switch, a serial bus command, an input reference signal from the LCP or LOP, via remote operation using MCT 10 software, or after a cleared fault condition.
To prevent unintended motor start:

- Disconnect the frequency converter from mains.
- Press [Off/Reset] on the LCP, before programming parameters.
- The frequency converter, motor, and any driven equipment must be fully wired and assembled when the frequency converter is connected to AC mains, DC power supply, or load sharing.

AWARNING

EQUIPMENT HAZARD
Contact with rotating shafts and electrical equipment can result in death or serious injury.

- Ensure that only trained and qualified personnel perform installation, start up, and maintenance.
- Ensure that electrical work conforms to national and local electrical codes.
- Follow the procedures in these operating instructions.

ACAUTION

INTERNAL FAILURE HAZARD

An internal failure in the frequency converter can result in serious injury, when the frequency converter is not properly closed.

- Ensure that all safety covers are in place and securely fastened before applying power.

AWARNING
 UNINTENDED MOTOR ROTATION WINDMILLING

Unintended rotation of permanent magnet motors can result in serious injury or equipment damage.

- Ensure that permanent magnet motors are blocked to prevent unintended rotation.

2.1.1 Disposal Instruction

Do not dispose of equipment containing electrical components together with domestic waste.

Collect it separately in accordance with local and currently valid legislation.

Table 2.2 Disposal Instruction

2.2 Software Version

2.2.1 Software Version and Approvals

This manual can be used with all VLT AQUA Drive frequency converters with software version 1.95 .
The software version number can be found in parameter 15-43.

Table 2.3 Software Version

2.3 CE Labelling

2.3.1 CE Conformity and Labelling

What is CE Conformity and Labelling?

The purpose of CE labelling is to avoid technical trade obstacles within EFTA and the EU. The EU has introduced the CE label as a simple way of showing whether a product complies with the relevant EU directives. The CE label says nothing about the specifications or quality of
the product. There are three EU directives that regulate frequency converters:

The machinery directive (2006/42/EC)
Frequency converters with integrated safety function are now falling under the Machinery Directive. Danfoss CElabels in accordance with the directive and issues a declaration of conformity upon request. Frequency converters without safety function do not fall under the machinery directive. However, if a frequency converter is supplied for use in a machine, we provide information on safety aspects relating to the frequency converter.

The low-voltage directive (2006/95/EC)
Frequency converters must be CE labelled in accordance with the low-voltage directive of January 1, 1997. The directive applies to all electrical equipment and appliances used in the $50-1000 \mathrm{~V}$ AC and the $75-1500 \mathrm{~V}$ DC voltage ranges. Danfoss CE-labels in accordance with the directive and issues a declaration of conformity upon request.

The EMC directive (2004/108/EC)
EMC is short for electromagnetic compatibility. The presence of electromagnetic compatibility means that the mutual interference between different components/ appliances does not affect the way the appliances work. The EMC directive came into effect January 1, 1996. Danfoss CE-labels in accordance with the directive and issues a declaration of conformity upon request. To carry out EMC-correct installation, see the instructions in this Design Guide. Additionally, find specifications of which standards the Danfoss products comply with. The filters presented in the specifications are part of the product range. Furthermore, Danfoss offers other types of assistance to ensure optimum EMC result.

2.3.2 What Is Covered

The EU "Guidelines on the Application of Council Directive 2004/108/EC" outline three typical situations of using a frequency converter. See the following list for EMC coverage and CE labelling.

1. The frequency converter is sold directly to the end consumer, for example, to a DIY market. The end consumer is a layman who installs the frequency converter for use with a household appliance. For such applications, the frequency converter must be CE labelled in accordance with the EMC directive.
2. The frequency converter is sold for installation in a plant designed by trade professionals. The frequency converter and the finished plant do not have to be CE labelled under the EMC directive. However, the unit must comply with the basic EMC requirements of the directive. Compliance is ensured by using components,
appliances, and systems that are CE labelled under the EMC directive.
3. The frequency converter is sold as part of a complete system, such as an air-conditioning system. The entire system must be CE labelled in accordance with the EMC directive. The manufacturer can ensure CE labelling under the EMC directive either by using CE labelled components or by testing the EMC of the system. If the manufacturer chooses to use only CE labelled components, there is no need to test the entire system.

2.3.3 Danfoss Frequency Converter and CE Labelling

CE labelling is a positive feature when used for its original purpose, which is to facilitate trade within the EU and EFTA.

CE labelling can cover many different specifications, so check the CE label to ensure that it covers the relevant applications.

Danfoss CE labels the frequency converters in accordance with the low-voltage directive, meaning that if the frequency converter is installed correctly, Danfoss guarantees compliance with the low-voltage directive. Danfoss issues a declaration of conformity that confirms our CE labelling in accordance with the low-voltage directive.

The CE label also applies if following the instructions for EMC-correct installation and filtering.

Detailed instructions for EMC-correct installation are found in. Furthermore, Danfoss specifies which standards our products comply with.

2.3.4 Compliance with EMC Directive 2004/108/EC

The primary users of the frequency converter are trade professionals, who use it as a complex component forming part of a larger appliance, system, or installation. The responsibility for the final EMC properties of the appliance, system, or installation rests with the installer. As an aid to the installer, Danfoss has prepared EMC installation guidelines for the power drive system. If the EMC-correct instructions for installation are followed, the standards and test levels stated for power drive systems are complied with. See chapter 2.11 Immunity Requirements.

2.4 Air Humidity

The frequency converter has been designed to meet the IEC/EN 60068-2-3 standard, EN 50178 pkt. 9.4.2.2 at $50^{\circ} \mathrm{C}$.

2.5 Aggressive Environments

A frequency converter contains many mechanical and electronic components. All are to some extent vulnerable to environmental effects.

ACAUTION

The frequency converter must not be installed in environments with airborne liquids, particles, or gases capable of affecting and damaging the electronic components. Failure to take the necessary protective measures increases the risk of stoppages, thus reducing the life of the frequency converter.

Degree of protection as per IEC 60529

The safe stop function can only be installed and operated in a control cabinet with degree of protection IP54 or higher (or equivalent environment) to avoid cross faults and short circuits between terminals, connectors, tracks, and safety-related circuitry caused by foreign objects.

Liquids can be carried through the air and condense in the frequency converter and can cause corrosion of components and metal parts. Steam, oil, and salt water can cause corrosion of components and metal parts. In such environments, use equipment with enclosure rating IP54/ IP55. As an extra protection, coated printed circuit boards can be ordered as an option.

Airborne Particles such as dust can cause mechanical, electrical, or thermal failure in the frequency converter. A typical indicator of excessive levels of airborne particles is dust particles around the frequency converter fan. In dusty environments, use equipment with enclosure rating IP54/ IP55 or a cabinet for IP00/IP20/NEMA 1 equipment.

In environments with high temperatures and humidity, corrosive gases such as sulphur, nitrogen, and chlorine compounds cause chemical processes on the frequency converter components.

Such chemical reactions damage the electronic components quickly. In such environments, mount the equipment in a cabinet with fresh air ventilation, keeping aggressive gases away from the frequency converter. An extra protection in such areas is a coating of the printed circuit boards, which can be ordered as an option.

NOTICE

Mounting frequency converters in aggressive environments increases the risk of stoppages and considerably reduces the life of the converter.

Before installing the frequency converter, check the ambient air for liquids, particles, and gases by observing existing installations in this environment. Typical indicators of harmful airborne liquids are water or oil on metal parts, or corrosion of metal parts.

Excessive dust particle levels are often found on installation cabinets and existing electrical installations. One indicator of aggressive airborne gases is blackening of copper rails and cable ends on existing installations.
D and E enclosures have a stainless steel back channel option to provide more protection in aggressive environments. Proper ventilation is still required for the internal components of the frequency converter. Contact Danfoss for more information.

2.6 Vibration and Shock

The frequency converter has been tested according to the procedure based on the following standards:

The frequency converter complies with requirements that exist for units mounted on the walls and floors of production premises, as well as in panels bolted to walls or floors.

- IEC/EN 60068-2-6: Vibration (sinusoidal) - 1970
- IEC/EN 60068-2-64: Vibration, broad-band random

2.7 Safe Torque Off (STO)

STO is an option. To run STO, additional wiring for the frequency converter is required. Refer to $V L T T^{\circledR}$ Frequency Converters Safe Torque Off Operating Instructions for further information.

2.8 Frequency Converter Benefits

2.8.1 Why use a Frequency Converter for Controlling Fans and Pumps?

A frequency converter takes advantage of the fact that centrifugal fans and pumps follow the laws of proportionality for such fans and pumps. For further information, see the text and Illustration 2.1.

2.8.2 The Clear Advantage - Energy Savings

The clear advantage of using a frequency converter for controlling the speed of fans or pumps lies in the electricity savings.
When comparing with alternative control systems and technologies, a frequency converter is the optimum energy control system for controlling fan and pump systems.

Illustration 2.1 Fan Curves (A, B and C) for Reduced Fan Volumes

More than 50\% energy savings can be obtained in typical applications when a frequency converter is used to reduce fan capacity to 60%.

Illustration 2.2 Energy Savings

Introduction

2.8.3 Example of Energy Savings

As can be seen in Illustration 2.3, the flow is controlled by changing the RPM. Reducing the speed only 20% from the rated speed reduces the flow by 20%. This reduction occurs because the flow is directly proportional to the RPM. The consumption of electricity, however, is 50\% lower.
If the system in question must supply a flow that corresponds to 100% only a few days in a year, while the average is below 80% of the rated flow for the remainder of the year, the amount of energy saved is even more than 50\%.

$\mathrm{Q}=$ Flow	$\mathrm{P}=$ Power
$\mathrm{Q}_{1}=$ Rated flow	$\mathrm{P}_{1}=$ Rated power
$\mathrm{Q}_{2}=$ Reduced flow	$\mathrm{P}_{2}=$ Reduced power
$\mathrm{H}=$ Pressure	$\mathrm{n}=$ Speed regulation
$\mathrm{H}_{1}=$ Rated pressure	$\mathrm{n}_{1}=$ Rated speed
$\mathrm{H}_{2}=$ Reduced pressure	$\mathrm{n}_{2}=$ Reduced speed

Table 2.4 Laws of Proportionality

Illustration 2.3 Dependence of Flow, Pressure and Power consumption on RPM

2.8.4 Example with Varying Flow Over One Year

Illustration 2.4 is calculated based on pump characteristics obtained from a pump datasheet.
The result obtained shows energy savings in excess of 50\% at the given flow distribution over a year. The pay back period depends on the price per kWh and the price of the frequency converter. In this example, it is less than a year when compared with valves and constant speed.

Energy savings

$P_{\text {shaft }}=P_{\text {shaft output }}$

Illustration 2.4 Flow Distribution over 1 Year

Introduction
Design Guide

Illustration 2.5 Energy Savings in a Pump Application

$\mathbf{m}^{\mathbf{3} /}$ \mathbf{h}	Distri- bution		Valve regulation		Frequency converter control	
	$\%$	Hours	Power	Consump- tion	Power	Consump- tion
			$\mathbf{A}_{\mathbf{1}}-\mathrm{B}_{\mathbf{1}}$	$\mathbf{k W h}$	$\mathbf{A}_{\mathbf{1}}-\mathbf{C}_{\mathbf{1}}$	$\mathbf{k W h}$
350	5	438	42,5	18.615	42,5	18.615
300	15	1314	38,5	50.589	29,0	38.106
250	20	1752	35,0	61.320	18,5	32.412
200	20	1752	31,5	55.188	11,5	20.148
150	20	1752	28,0	49.056	6,5	11.388
100	20	1752	23,0	40.296	3,5	6.132
Σ	100	8760		275.064		26.801

Table 2.5 Energy Savings - Calculation

2.8.5 Better Control

If a frequency converter is used for controlling the flow or pressure of a system, improved control is obtained.
A frequency converter can vary the speed of the fan or pump, obtaining .
Furthermore, a frequency converter can quickly adapt the speed of the fan or pump to new flow or pressure conditions in the system.
Simple control of process (flow, level, or pressure) utilising the built-in PID control.

2.8.6 $\operatorname{Cos} \varphi$ Compensation

Generally speaking, the frequency converter has a $\cos \varphi$ of 1 and provides power factor correction for the $\cos \varphi$ of the motor, which means that there is no need to make allowance for the $\cos \varphi$ of the motor when sizing the power factor correction unit.

2.8.7 Star/delta Starter or Soft-starter not required

When larger motors are started, it is necessary in many countries to use equipment that limits the start-up current. In more traditional systems, a star/delta starter or softstarter is widely used. Such motor starters are not required if a frequency converter is used.

As shown in Illustration 2.6, a frequency converter does not consume more than rated current.

Illustration 2.6 Current Consumption with a Frequency Converter

1	VLT $^{\circledR}$ AQUA Drive FC 202
2	Star/delta starter
3	Soft-starter
4	Start directly on mains

Table 2.6 Legend to Illustration 2.6

Introduction

2.9 Control Structures

2.9.1 Control Principle

A frequency converter rectifies $A C$ voltage from mains into $D C$ voltage, after which this $D C$ voltage is converted into $A C$ power with a variable amplitude and frequency.

The motor is supplied with variable voltage/current and frequency, which enables infinitely variable speed control of threephased, standard AC motors and permanent magnet synchronous motors.

Illustration 2.7 Control Principle

The control terminals provide for wiring feedback, reference, and other input signals to the following:

- frequency converter
- output of frequency converter status and fault conditions
- relays to operate auxiliary equipment
- serial communication interface

Control terminals are programmable for various functions by selecting parameter options described in the main or quick menus. Most control wiring is customer supplied unless factory ordered. A 24 V DC power supply is also provided for use with the frequency converter control inputs and outputs.

Table 2.7 describes the functions of the control terminals. Many of these terminals have multiple functions determined by parameter settings. Some options provide more terminals. See chapter 5.1 Mechanical Installation for terminal locations.

Introduction
Design Guide

Terminal no.	Function
01, 02, 03 and 04, 05, 06	Two form C output relays. Maximum 240 V AC, 2 A . minimum 24 V DC, 10 mA , or $24 \mathrm{VAC}, 100 \mathrm{~mA}$. Can be used for indicating status and warnings. Physically located on the power card.
12, 13	24 V DC power supply to digital inputs and external transducers. The maximum output current is 200 mA .
18, 19, 27, 29, 32, 33	Digital inputs for controlling the frequency converter. $\mathrm{R}=2 \mathrm{k} \Omega$. Less than $5 \mathrm{~V}=\operatorname{logic} 0$ (open). Greater than $10 \mathrm{~V}=$ logic 1 (closed). Terminals 27 and 29 are programmable as digital/pulse outputs.
20	Common for digital inputs.
37	0-24 V DC input for safety stop (some units).
39	Common for analog and digital outputs.
42	Analog and digital outputs for indicating values such as frequency, reference, current, and torque. The analog signal is $0 / 4$ to 20 mA at a maximum of 500Ω. The digital signal is 24 V DC at a minimum of 500 Ω.
50	10 V DC, 15 mA maximum analog supply voltage for potentiometer or thermistor.
53, 54	Selectable for $0-10 \mathrm{~V}$ DC voltage input, $\mathrm{R}=10 \mathrm{k} \Omega$, or analog signals $0 / 4$ to 20 mA at a maximum of 200Ω. Used for reference or feedback signals. A thermistor can be connected here.
55	Common for terminals 53 and 54.
61	RS-485 common.
68,69	RS-485 interface and serial communication.

Table 2.7 Terminal Control Functions (without Optional Equipment)

Introduction
Design Guide

Illustration 2.8 D-frame Interconnect Diagram

Introduction

Illustration 2.9 E- and F-frame Interconnect Diagram

Introduction

2.9.2 Control Structure Open Loop

In the configuration shown in Illustration 2.10, 1-00 Configuration Mode is set to [0] Open loop. The resulting reference from the reference handling system or the local reference is received and fed through the ramp limitation and speed limitation before being sent to the motor control. The maximum frequency allowed limits the output from the motor control.

2.9.3 Local (Hand On) and Remote (Auto On) Control

The frequency converter can be operated manually via the LCP or remotely via analog/digital inputs or serial bus. If allowed in 0-40 [Hand on] Key on LCP, 0-41 [Off] Key on LCP, 0-42 [Auto on] Key on LCP, and 0-43 [Reset] Key on LCP, it is possible to start and stop the frequency converter by LCP using the [HandOn] and [Off] keys. Alarms can be reset via the [Reset] key. After pressing the [Hand On] key, the frequency converter goes into Hand Mode and follows (as default) the local reference set by pressing the navigation keys [$\mathbf{\Delta}$] and [\mathbf{v}].

After pressing the [Auto On] key, the frequency converter goes into auto mode and follows (as default) the remote reference. In this mode, it is possible to control the frequency converter via the digital inputs and various serial interfaces (RS-485, USB, or an optional fieldbus). See more about starting, stopping, changing ramps and parameter set-ups in parameter group 5-1* Digital Inputs or parameter group 8-5* Serial Communication.

Illustration 2.11 LCP Control Keys

Hand Off Auto LCP Keys	Reference Site $3-13$ Reference Site	Active Reference
Hand	Linked to Hand/ Auto	Local
Hand \Rightarrow Off	Linked to Hand/ Auto	Local
Auto	Linked to Hand/ Auto	Remote
Auto \Rightarrow Off	Linked to Hand/ Auto	Remote
All keys	Local	Local
All keys	Remote	Remote

Table 2.8 Conditions for either Local or Remote Reference
Table 2.8 shows under which conditions either the local reference or the remote reference is active. One of them is always active, but both cannot be active at the same time.

Local reference forces the configuration mode to open loop, independent on the setting of 1-00 Configuration Mode.

Local reference is restored at power-down.

Introduction

2.9.4 Control Structure Closed Loop

The internal controller allows the frequency converter to become a part of the controlled system. The frequency converter receives a feedback signal from a sensor in the system. It then compares this feedback to a set-point reference value and determines the error, if any, between these two signals. It then adjusts the speed of the motor to correct this error.

For example, consider a pump application in which the speed of a pump is controlled so that the static pressure in a pipe is constant. The desired static pressure value is supplied to the frequency converter as the set-point reference. A static pressure sensor measures the actual static pressure in the pipe and supplies this information to the frequency converter as a feedback signal. If the feedback signal is greater than the set-point reference, the frequency converter slows to reduce the pressure. In a similar way, if the pipe pressure is lower than the set-point reference, the frequency converter speeds up to increase the pressure provided by the pump.

Illustration 2.12 Block Diagram of Closed Loop Controller

While the default values for the closed loop controller often provides satisfactory performance, the control of the system can often be optimised by adjusting some of the parameters of the closed loop controller. It is also possible to autotune the PI constants.

Introduction

2.9.5 Feedback Handling

Illustration 2.13 Block Diagram of Feedback Signal Processing

Feedback handling can be configured to work with applications requiring advanced control, such as multiple setpoints and multiple types of feedback. Three types of control are common.

Single zone, single setpoint

Single Zone Single Setpoint is a basic configuration. Setpoint 1 is added to any other reference (if any, see Reference Handling) and the feedback signal is selected using 20-20 Feedback Function.

Multi-zone, single setpoint

Multi-Zone Single Setpoint uses two or three feedback sensors but only one setpoint. The feedback can be added, subtracted (only feedback 1 and 2) or averaged. In addition, the maximum or minimum value can be used. Setpoint 1 is used exclusively in this configuration.

If [13] Multi-Setpoint Min is selected, the setpoint/feedback pair with the largest difference controls the speed of the frequency converter. [14] Multi-Setpoint Maximum attempts to keep all zones at or below their respective setpoints, while [13] Multi-Setpoint Minattempts to keep all zones at or above their respective setpoints.

Example:

A two zone, two setpoint application Zone 1 setpoint is 15 bar and the feedback is 5.5 bar. Zone 2 setpoint is 4.4 bar and the feedback is 4.6 bar. If [14] Multi-Setpoint Max is selected, Zone 1 setpoint and feedback are sent to the PID controller, since it has the smaller difference (feedback is higher than setpoint, resulting in a negative difference). If [13] Multi-Setpoint Min is selected, Zone 2 setpoint and feedback is sent to the PID controller, since it has the larger difference (feedback is lower than setpoint, resulting in a positive difference).

2.9.6 Feedback Conversion

In some applications it could be useful to convert the feedback signal. One example is using a pressure signal to provide flow feedback. Since the square root of pressure is proportional to flow, the square root of the pressure signal yields a value proportional to the flow. For an example, see Illustration 2.14.

Illustration 2.14 Feedback Conversion

Introduction

2.9.7 Reference Handling

Details for Open Loop and Closed Loop operation.

Illustration 2.15 Block Diagram Showing Remote Reference

The Remote Reference is comprised of:

- Preset references.
- External references (analog inputs, pulse frequency inputs, digital potentiometer inputs, and serial communication bus references).
- The preset relative reference.
- Feedback controlled setpoint.

Up to eight preset references can be programmed in the frequency converter. The active preset reference can be
selected using digital inputs or the serial communications bus. The reference can also be supplied externally, most commonly from an analog input. Select this external source via one of the three reference source parameters (3-15 Reference 1 Source, 3-16 Reference 2 Source and 3-17 Reference 3 Source). Digipot is a digital potentiometer, also commonly called a Speed Up/Speed Down Control or a Floating Point Control. To set it up, one digital input is programmed to increase the reference while another digital input is programmed to decrease the reference. A third digital input can be used to reset the digipot reference. All reference resources and the bus reference

Introduction
are added to produce the total External Reference. The External Reference, the Preset Reference or the sum of the two can be selected to be the active reference. Finally, this reference can by be scaled using 3-14 Preset Relative Reference.

The scaled reference is calculated as follows:
Reference $=X+X \times\left(\frac{Y}{100}\right)$
Where X is the external reference, the preset reference, or the sum of these and Y is 3-14 Preset Relative Reference in [\%].

If Y, 3-14 Preset Relative Reference is set to 0%, the scaling does not affect the reference.

2.9.8 Example of Closed Loop PID Control

The following is an example of a Closed Loop Control for a booster pump application:

Illustration 2.16 Closed Loop PID Control

In a water distribution system, the pressure must be maintained at a constant value. The desired pressure (setpoint) is set between 0 and 10 Bar using a $0-10 \mathrm{~V}$ potentiometer or a parameter. The pressure sensor has a range of $0-10$ Bar and uses a two-wire transmitter to
provide a 4-20 mA signal. The output frequency range of the frequency converter is $10-50 \mathrm{~Hz}$.

1. Start/Stop via switch connected between terminals $12(+24 \mathrm{~V})$ and 18.
2. Pressure reference via a potentiometer (0-10 Bar, $0-10 \mathrm{~V}$) connected to terminals $50(+10 \mathrm{~V}), 53$ (input) and 55 (common).
3. Pressure feedback via transmitter (0-10 Bar, 4-20 mA) connected to terminal 54. Switch S202 behind the Local Control Panel set to ON (current input).

Illustration 2.17 Closed Loop PID Control in a Water Distribution System

Introduction

2.9.9 Programming Order

Function	Par. no.	Setting
1) Make sure that the motor runs properly. Do the following:		
Set the motor parameters using nameplate data.	1-2*	As specified by motor name plate
Run Automatic Motor Adaptation.	1-29	[1] Enable complete AMA and then run the AMA function.
2) Check that the motor is running in the right direction.		
Run Motor Rotation Check.	1-28	If the motor runs in the wrong direction, remove power temporarily and reverse two of the motor phases.
3) Make sure that the frequency converter limits are set to safe values		
Check that the ramp settings are within capabilities of the drive and allowed application operating specifications.	$\begin{aligned} & 3-41 \\ & 3-42 \end{aligned}$	60 s. 60 s. Depends on motor/load size! Also active in Hand mode.
Prohibit the motor from reversing (if necessary)	4-10	[0] Clockwise
Set acceptable limits for the motor speed.	$\begin{array}{\|l} \hline 4-12 \\ 4-14 \\ 4-19 \end{array}$	10 Hz, Motor min speed 50 Hz , Motor max speed 50 Hz , Drive max output frequency
Switch from open loop to closed loop.	1-00	[3] Closed Loop
4) Configure the feedback to the PID controller.		
Select the appropriate reference/feedback unit.	20-12	[71] Bar
5) Configure the set-point reference for the PID controller.		
Set acceptable limits for the set-point reference.	$\begin{aligned} & 3-02 \\ & 3-03 \end{aligned}$	$\begin{aligned} & 0 \text { Bar } \\ & 10 \text { Bar } \end{aligned}$
Choose current or voltage by switches S201/S202		
6) Scale the analog inputs used for set-point reference and feedback.		
Scale Analog Input 53 for the pressure range of the potentiometer ($0-10$ Bar, $0-10 \mathrm{~V}$).	$\begin{aligned} & \hline 6-10 \\ & 6-11 \\ & 6-14 \\ & 6-15 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \mathrm{~V} \\ 10 \mathrm{~V} \text { (default) } \\ 0 \mathrm{Bar} \\ 10 \mathrm{Bar} \\ \hline \end{array}$
Scale Analog Input 54 for pressure sensor (0-10 Bar, 420 mA)	$\begin{aligned} & \hline 6-22 \\ & 6-23 \\ & 6-24 \\ & 6-25 \end{aligned}$	$\begin{aligned} & \hline 4 \mathrm{~mA} \\ & 20 \mathrm{~mA} \text { (default) } \\ & 0 \mathrm{Bar} \\ & 10 \mathrm{Bar} \\ & \hline \end{aligned}$
7) Tune the PID controller parameters.		
Adjust the closed loop controller, if needed.	$\left\lvert\, \begin{aligned} & 20-93 \\ & 20-94 \end{aligned}\right.$	See chapter 2.9.11 Manual PID Adjustment.
8) Finished!		
Save the parameter setting to the LCP for safe keeping	0-50	[1] All to LCP

Table 2.9 Programming Closed Loop PID

Introduction

2.9.10 Tuning the Closed Loop Controller

Once the closed loop controller has been set up, test the performance of the controller. In many cases, its performance is acceptable using the default values of 20-93 PID Proportional Gain and 20-94 PID Integral Time. However, in some cases it is helpful to optimise these parameter values to provide faster system response while still controlling speed overshoot.

2.9.11 Manual PID Adjustment

1. Start the motor
2. Set 20-93 PID Proportional Gain to 0.3 and increase it until the feedback signal begins to oscillate. If necessary, start and stop the frequency converter or make step changes in the set-point reference to attempt to cause oscillation. Next reduce the PID Proportional Gain until the feedback signal stabilises. Then reduce the proportional gain by $40-60 \%$.
3. Set 20-94 PID Integral Time to 20 s. and reduce it until the feedback signal begins to oscillate. If necessary, start and stop the frequency converter or make step changes in the set-point reference to attempt to cause oscillation. Next, increase the PID Integral Time until the feedback signal stabilises. Then increase of the Integral Time by 15-50\%.
4. Use 20-95 PID Differentiation Time only for fastacting systems. The typical value is 25% of 20-94 PID Integral Time. Use the differential function only when the setting of the proportional gain and the integral time has been fully optimised. Make sure that oscillations of the feedback signal are sufficiently dampened by the low-pass filter for the feedback signal (6-16 Terminal 53 Filter Time Constant, 6-26 Terminal 54 Filter Time Constant, 5-54 Pulse Filter Time Constant \#29 or 5-59 Pulse Filter Time Constant \#33 as required).

Introduction

2.10 General Aspects of EMC

2.10.1 General Aspects of EMC Emissions

Electrical interference is most commonly found at frequencies in the range 150 kHz to 30 MHz . Airborne interference from the frequency converter system in the range 30 MHz to 1 GHz is generated from the inverter, motor cable, and the motor. Capacitive currents in the motor cable coupled with a high dU/dt from the motor voltage generate leakage currents. Screened motor cables increase the leakage current (see Illustration 2.18) because they have higher capacitance to earth than unscreened cables. If the leakage current is not filtered, it causes greater interference on the mains in the radio frequency range below 5 MHz . Since the leakage current ($\left(_{1}\right.$) is carried back to the unit through the screen (1_{3}), there is only a small electromagnetic field (I_{4}) from the screened motor cable.

While the screen reduces the radiated interference, it increases the low-frequency interference on the mains. Connect the motor cable screen to the frequency converter enclosure as well as the motor enclosure. To connect the screen, use integrated screen clamps to avoid twisted screen ends. The twisted screen ends increase the screen impedance at higher frequencies, which reduces the screen effect and increases the leakage current (14).
If a screened cable is used for fieldbus, relay, control cable, signal interface, or brake, mount the screen on the enclosure at both ends. In some situations, however, it is necessary to break the screen to avoid current loops.

Illustration 2.18 Leakage Currents

1	Earth wire
2	Screen
3	AC mains supply
4	Frequency converter
5	Screened motor cable
6	Motor

Table 2.10 Legend to Illustration 2.18
Illustration 2.18 shows an example of a 6 -pulse frequency converter, but could be applicable to a 12 -pulse as well.

If placing the screen on a mounting plate, use a metal plate because the screen currents must be conveyed back to the frequency converter. Ensure good electrical contact from the mounting plate through the mounting screws to the frequency converter chassis. When unscreened cables are used, some emission requirements are not complied with, although the immunity requirements are observed.

To reduce the interference level from the entire system (unit and installation), make motor and brake cables as short as possible. Avoid placing cables with a sensitive signal level alongside motor and brake cables. Radio interference higher than 50 MHz (airborne) comes from the control electronics. For more information on EMC, see chapter 5.9 EMC-correct Installation.

2.10.2 Emission Requirements

According to the EMC product standard for adjustable speed frequency converters EN/IEC 61800-3:2004, the EMC requirements depend on the environment in which the frequency converter is installed. These environments along with the mains voltage supply requirements are defined in Table 2.11.

Category	Definition	Conducted emission requirement according to EN 55011 limits
C1	Frequency converters installed in a home and office environment with a supply voltage less than $1,000 \mathrm{~V}$.	Class B
C2	Frequency converters installed in the home and office environment with a supply voltage less than $1,000 \mathrm{~V}$. These frequency converters are not plug-in and cannot be moved and are intended to for professional installation and commissioning.	Class A Group 1
C3	Frequency converters installed in an industrial environment with a supply voltage lower than $1,000 \mathrm{~V}$.	Class A Group 2
C4	Frequency converters installed in an industrial environment with a supply voltage equal to or above $1,000 \mathrm{~V}$ or rated current equal to or above 400 A or intended for use in complex systems.	Make an EMC plan

Table 2.11 Emission Requirements
When the generic emission standards are used, the frequency converters are required to comply with Table 2.12

Environment	Generic Standard	Conducted emission requirement according to EN 55011 limits
First environment (home and office)	EN/IEC 61000-6-3 Emission standard for residential, commercial, and light industrial environments.	Class B
Second environment (industrial environment)	EN/IEC 61000-6-4 Emission standard for industrial environments.	Class A Group 1

Table 2.12 Generic Emission Standard Limits

Introduction

2.10.3 EMC Test Results (Emission)

The test results in Table 2.13 have been obtained using a system with a frequency converter (with options if relevant), a screened control cable, a control box with potentiometer, as well as a motor and motor screened cable.

| RFI filter type | Phase
 type | Conducted emission
 Maximum shielded cable length | | | Radiated emission | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 2.13 EMC Test Results (Emission)

2.10.4 General Aspects of Harmonics Emission

A frequency converter takes up a non-sinusoidal current from mains, which increases the input current lrms. A nonsinusoidal current is transformed with a Fourier analysis and split up into sine-wave currents with different frequencies, such as harmonic currents I_{n} with 50 Hz (or 60 $\mathrm{Hz})$ as the basic frequency:

	$\mathbf{I}_{\mathbf{1}}$	$\mathbf{I}_{\mathbf{5}}$	$\mathbf{I}_{\mathbf{7}}$
[\mathrm{Hz}]{}	50	250	350
	60	300	420

Table 2.14 Harmonic Currents
The harmonics do not affect the power consumption directly but increase the heat losses in the installation (transformer, cables). In plants with a high percentage of rectifier load, maintain harmonic currents at a low level to avoid overload of the transformer and high temperature in the cables.

Illustration 2.19 Harmonics

NOTICE

Some of the harmonic currents could disturb communication equipment connected to the same transformer or cause resonance with power-factor correction batteries.

To ensure low harmonic currents, the frequency converter is equipped with DC link inductors as standard, to reduce the input current lims by 40%.

The voltage distortion on the mains supply voltage depends on the size of the harmonic currents multiplied by the mains impedance for the frequency in question. The individual voltage harmonics calculate the total voltage distortion (THD) using this formula:
$T H O \%=\sqrt{v_{5}^{2}+v_{7}^{2}+\ldots+v^{\frac{2}{N}}}$
($\mathrm{U}_{\mathrm{N}} \%$ of U)

Introduction

2.10.5 Harmonics Emission Requirements

Equipment connected to the public supply network

Option	Definition
1	IEC/EN 61000-3-2 Class A for 3-phase balanced equipment (for professional equipment only up to 1 kW total power).
2	IEC/EN 61000-3-12 Equipment 16 A-75 A and profes- sional equipment as from 1 kW up to 16 A phase current.

Table 2.15 Harmonics Emission Standards

2.10.6 Harmonics Test Results (Emission)

Power sizes up to PK75 in T2 and T4 complies with IEC/EN 61000-3-2 Class A. Power sizes from P1K1 and up to P18K in T2 and up to P90K in T4 complies with IEC/EN 61000-3-12, Table 4. Power sizes P110-P450 in T4 also complies with IEC/EN 61000-3-12 even though not required because currents are above 75 A .

Table 2.16 describes that the short-circuit power of the supply $S_{s c}$ at the interface point between the user's supply and the public system ($\mathrm{R}_{\text {sce }}$) is greater than or equal to:
$S S C=\sqrt{3} \times$ RSCE \times Umains \times lequ $=\sqrt{3} \times 120 \times 400 \times$ lequ

	Individual Harmonic Current $I_{n} / I_{1}(\%)$			
	I_{5}	I_{7}	I_{11}	I_{13}
Actual (typical)	40	20	10	8
Limit for $\mathrm{R}_{\text {sce }} \geq 120$	40	25	15	10
	Harmonic current distortion factor (\%)			
	THD		PWHD	
	46		45	
	48		46	

Table 2.16 Harmonics Test Results (Emission)

It is the responsibility of the installer or user of the equipment to ensure, by consultation with the distribution network operator if necessary, that the equipment is connected only to a supply with a short-circuit power S_{sc} greater than or equal to that specified in the equation. Consult the distribution network operator to connect other power sizes to the public supply network.

Compliance with various system level guidelines: The harmonic current data in Table 2.16 are provided in accordance with IEC/EN61000-3-12 with reference to the power drive systems product standard. They may be used as the basis for calculation of the influence harmonic currents have on the power supply system and for the
documentation of compliance with relevant regional guidelines: IEEE 519-1992; G5/4.

2.10.6. Harmonics Test Results (Emission)

Power sizes up to PK75 in T2 and T4 complies with IEC/EN 61000-3-2 Class A. Power sizes from P1K1 and up to P18K in T2 and up to P90K in T4 complies with IEC/EN 61000-3-12, Table 4. Power sizes P110-P450 in T4 also complies with IEC/EN 61000-3-12 even though not required because currents are above 75 A .

Table 2.16 describes that the short-circuit power of the supply S_{sc} at the interface point between the user's supply and the public system $\left(\mathrm{R}_{\text {sce }}\right)$ is greater than or equal to:
$S S C=\sqrt{3} \times R S C E \times$ Umains \times lequ $=\sqrt{3} \times 120 \times 400 \times l e q u$

	Individual Harmonic Current $\mathrm{I}_{\mathrm{n}} / \mathrm{I}_{1}(\%)$			
	$\mathrm{I}_{\mathbf{5}}$	$\mathrm{I}_{\mathbf{7}}$	I_{11}	I_{13}
Actual (typical)	40	20	10	8
Limit for $\mathrm{R}_{\text {sce }} \geq 120$	40	25	15	10
	Harmonic current distortion factor (\%)			
	THD		PWHD	
Actual (typical)	46		45	
Limit for $R_{s c e} \geq 120$	48		46	

Table 2.17 Harmonics Test Results (Emission)
It is the responsibility of the installer or user of the equipment to ensure, by consultation with the distribution network operator if necessary, that the equipment is connected only to a supply with a short-circuit power S_{sc} greater than or equal to that specified in the equation. Consult the distribution network operator to connect other power sizes to the public supply network.

Compliance with various system level guidelines: The harmonic current data in Table 2.16 are provided in accordance with IEC/EN61000-3-12 with reference to the power drive systems product standard. They may be used as the basis for calculation of the influence harmonic currents have on the power supply system and for the documentation of compliance with relevant regional guidelines: IEEE 519-1992; G5/4.

2.11 Immunity Requirements

The immunity requirements for frequency converters depend on the environment where they are installed. The requirements for the industrial environment are higher than the requirements for the home and office environment. All Danfoss frequency converters comply with the requirements for the industrial environment as well as the lower requirements for home and office environment with a large safety margin.

Introduction

To document immunity against electrical interference from electrical phenomena, the following immunity tests have been made on a system consisting of a frequency converter (with options if relevant), a screened control cable and a control box with potentiometer, motor cable, and motor.
The tests were performed in accordance with the following basic standards:

- EN 61000-4-2 (IEC 61000-4-2): Electrostatic discharges (ESD): Simulation of electrostatic discharges from human beings.
- EN 61000-4-3 (IEC 61000-4-3): Incoming electromagnetic field radiation, amplitude modulated simulation of the effects of radar and radio
communication equipment as well as mobile communications equipment.
- EN 61000-4-4 (IEC 61000-4-4): Burst transients: Simulation of interference brought about by switching a contactor, relay, or similar devices.
- EN 61000-4-5 (IEC 61000-4-5): Surge transients: Simulation of transients brought about for example, by lightning that strikes near installations.
- EN 61000-4-6 (IEC 61000-4-6): RF Common mode: Simulation of the effect from radiotransmission equipment joined by connection cables.

See Table 2.18.

Voltage range: 380-480 V, 525-600 V, 525-690 V					
Basic standard	Burst IEC 61000-4-4	Surge IEC 61000-4-5	$\begin{gathered} \hline \text { ESD } \\ \text { IEC } \\ 61000-4-2 \end{gathered}$	Radiated electromagnetic field IEC 61000-4-3	RF common mode voltage IEC 61000-4-6
Acceptance criterion	B	B	B	A	A
Line	4 kV CM	$\begin{gathered} 2 \mathrm{kV} / 2 \Omega \mathrm{DM} \\ 4 \mathrm{kV} / 12 \Omega \mathrm{CM} \end{gathered}$	-	-	$10 \mathrm{~V}_{\text {RMS }}$
Motor	4 kV CM	$4 \mathrm{kV} / 2 \Omega^{1)}$	-	-	$10 \mathrm{~V}_{\text {RMS }}$
Brake	4 kV CM	$4 \mathrm{kV} / 2 \Omega^{1)}$	-	-	10 VRMS
Load sharing	4 kV CM	$4 \mathrm{kV} / 2 \Omega^{1)}$	-	-	$10 \mathrm{~V}_{\text {RMS }}$
Control wires	2 kV CM	$2 \mathrm{kV} / 2 \Omega^{1)}$	-	-	10 VRMS
Standard bus	2 kV CM	$2 \mathrm{kV} / 2 \Omega^{1)}$	-	-	10 VRMS
Relay wires	2 kV CM	$2 \mathrm{kV} / 2 \Omega{ }^{1)}$	-	-	10 Vrms
Application and Fieldbus options	2 kV CM	$2 \mathrm{kV} / 2 \Omega^{1)}$	-	-	$10 \mathrm{~V}_{\text {RMS }}$
LCP cable	2 kV CM	$2 \mathrm{kV} / 2 \Omega^{1)}$	-	-	$10 \mathrm{~V}_{\text {RMS }}$
External 24V DC	2 V CM	$\begin{aligned} & 0.5 \mathrm{kV} / 2 \Omega \mathrm{DM} \\ & 1 \mathrm{kV} / 12 \Omega \mathrm{CM} \end{aligned}$	-	-	$10 \mathrm{~V}_{\text {RMS }}$
Enclosure	-	-	8 kV AD 6 kV CD	10V/m	-

Table 2.18 EMC Immunity Form

1) Injection on cable shield

AD: Air Discharge
CD: Contact Discharge
CM: Common mode
DM: Differential mode

Introduction

2.12 Galvanic Isolation (PELV)

2.12.1 PELV - Protective Extra Low Voltage

AWARNING

Installation at high altitude:
380-500 V, enclosure D, E, and F: At altitudes above 3
km, contact Danfoss regarding PELV.
525-690 V: At altitudes above 2 km , contact Danfoss regarding PELV.

AWARNING

Touching the electrical parts could be fatal - even after the equipment has been disconnected from mains. Before touching any electrical parts, wait at least the amount of time indicated in Table 2.1.
Shorter time is allowed only if indicated on the specific unit's nameplate.
Also make sure that other voltage inputs have been disconnected.

Protection against electric shock is ensured when the electrical supply is of the PELV type and the installation complies with local/national regulations on PELV supplies.

All control terminals and relay terminals 01-03/04-06 comply with PELV. This does not apply to grounded Delta leg above 400 V . Galvanic isolation is obtained by fulfilling requirements for higher isolation and by providing the relevant creepage/clearance distances. These requirements are described in the EN 61800-5-1 standard.

To maintain PELV, all connections made to the control terminals must be PELV. The components that make up the electrical isolation also comply with the requirements for higher isolation and the relevant test as described in EN 61800-5-1.

The PELV galvanic isolation can be shown in 6 locations, as shown in Illustration 2.20.

1. Power supply (SMPS) including signal isolation of $U_{D C}$, indicating the intermediate current voltage.
2. Gate drive that runs the IGBTs (trigger transformers/opto-couplers).
3. Current transducers.
4. Optocoupler, brake module.
5. Internal inrush, RFI, and temperature measurement circuits.
6. Custom relays.

Illustration 2.20 Galvanic Isolation

The functional galvanic isolation - indicated by a and b in Illustration 2.20 - is for the 24 V backup option and for the RS-485 standard bus interface.

2.13 Earth Leakage Current

Follow national and local codes regarding protective earthing of equipment with a leakage current $>3.5 \mathrm{~mA}$. Frequency converter technology implies high frequency switching at high power, which generates a leakage current in the earth connection. A fault current at the frequency converter's output power terminals could contain a DC component that can charge the filter capacitors and cause a transient earth current. The earth leakage current is affected by the following:

- RFI filtering
- \quad screened motor cables
- \quad frequency converter power (see Illustration 2.21)
- line distortion (see Illustration 2.22)

Illustration 2.21 Influence of the Cable Length and Power Size on the Leakage Current

Introduction

Illustration 2.22 Influence of Line Distortion on Leakage Current

NOTICE

When a filter is used, turn off 14-50 RFI Filter when charging the filter to avoid a high leakage current making the RCD switch.

If the leakage current exceeds 3.5 mA , EN/IEC61800-5-1
(Power Drive System Product Standard) requires that earth grounding must be reinforced in one of the following ways:

- Earth ground wire (terminal 95) of at least 10 mm ${ }^{2}$
- $\quad 2$ separate earth ground wires both complying with the dimensioning rules

See EN/IEC61800-5-1 and EN50178 for further information.

Using RCDs

Where residual current devices (RCDs), also known as earth leakage circuit breakers (ELCBs), are used, comply with the following:

- Use RCDs of type B only, capable of detecting AC and DC currents
- Use RCDs with an inrush delay to prevent faults due to transient earth currents
- Dimension RCDs according to the system configuration and environmental considerations

See also Protection Against Electrical Hazards.

Illustration 2.23 Main Contributions to Leakage Current

Illustration 2.24 Influence of the Cut-off Frequency of the RCD What is Responded to/Measured

2.14 Control with Brake Function

2.14.1 Selection of Brake Resistor

In certain applications, for instance centrifuges, it is desirable to bring the motor to a stop more rapidly than can be achieved through controlling via ramp down or by free-wheeling. In such applications, dynamic braking with a braking resistor can be utilised. Using a braking resistor ensures that the energy is absorbed in the resistor and not in the frequency converter.

If the amount of kinetic energy transferred to the resistor in each braking period is not known, the average power can be calculated based on the cycle time and braking time also called intermittent duty cycle. The resistor intermittent duty cycle is an indication of the duty cycle at

Introduction
which the resistor is active. Illustration 2.25 shows a typical braking cycle.

The intermittent duty cycle for the resistor is calculated as follows:

Duty Cycle $=t_{b} / T$

T = cycle time in seconds
t_{b} is the braking time in seconds (as part of the total cycle time)

Illustration 2.25 Typical Braking Cycle

Danfoss offers brake resistors with duty cycles of 10% and 40% suitable for use with the VLT ${ }^{\circledR}$ AQUA Drive FC 202. If a 10% duty cycle resistor is applied, it can absorb braking power up to 10% of the cycle time with the remaining 90% being used to dissipate heat from the resistor.

For resistor selection information, refer to the Brake Resistor Design Guide.

NOTICE

If a short circuit in the brake transistor occurs, power dissipation in the brake resistor is only prevented by using a mains switch or contactor to disconnect the mains for the frequency converter. (The frequency converter can control the contactor).

2.14.2 Control with Brake Function

The brake is protected against short-circuiting of the brake resistor, and the brake transistor is monitored to ensure that short-circuiting of the transistor is detected. A relay/ digital output can be used to protect the brake resistor against overloading by generating a fault in the frequency converter.
In addition, the brake makes it possible to read out the momentary power and the mean power for the latest 120 s . The brake can also monitor the power energizing and make sure that it does not exceed the limit selected in

2-12 Brake Power Limit (kW). Use 2-13 Brake Power
Monitoring to select what function occurs when the power transmitted to the brake resistor exceeds the limit set in 2-12 Brake Power Limit (kW).

ACAUTION

Monitoring the brake power is not a safety function; a thermal switch is required for that purpose. The brake resistor circuit is not earth leakage protected.

Over voltage control (OVC) can be selected as an alternative brake function in 2-17 Over-voltage Control. This function is active for all units and ensures that if the DC link voltage increases, the output frequency also increases to limit the voltage from the DC link, thereby avoiding a trip.

NOTICE

OVC cannot be activated when running a PM motor, while 1-10 Motor Construction is set to [1] PM non-salient SPM.

2.15 Mechanical Brake Control

2.15.1 Brake Resistor Cabling

EMC (twisted cables/shielding)

Twist the wires to reduce electrical noise between the brake resistor and the frequency converter. For enhanced EMC performance, use a metal screen.

2.16 Extreme Running Conditions

Short circuit (motor phase - phase)

The frequency converter is protected against short circuits by current measurement in each of the three motor phases or in the DC link. A short circuit between two output phases causes an overcurrent in the inverter. The inverter is turned off individually when the short circuit current exceeds the permitted value (Alarm 16 Trip Lock.
To protect the drive against a short circuit at the load sharing and brake outputs, see the design guidelines.

Switching on the output

Switching on the output between the motor and the frequency converter is fully permitted and cannot damage the frequency converter, but it can cause fault messages to appear.

Motor-generated overvoltage

The voltage in the intermediate circuit is increased when the motor acts as a generator.

Overvoltage occurs in the following cases:

1. The load drives the motor, generating energy.
2. During deceleration ("ramp-down") if the moment of inertia is high, the friction is low, and the ramp-down time is too short for the energy to be

Introduction
dissipated as a loss in the frequency converter, the motor, and the installation.
3. In-correct slip compensation setting can cause higher DC link voltage.

The control unit could attempt to correct the ramp if possible (2-17 Over-voltage Control).
The inverter turns off to protect the transistors and the intermediate circuit capacitors when a certain voltage level is reached.
See 2-10 Brake Function and 2-17 Over-voltage Control to select the method used for controlling the intermediate circuit voltage level.

High temperature
High ambient temperature can cause the frequency converter to overheat.

Mains drop-out

During a mains drop-out, the frequency converter keeps running until the intermediate circuit voltage drops below the minimum stop level, which is typically 15% below the lowest rated supply voltage.

The mains voltage before the drop-out and the motor load determines how long it takes for the inverter to coast.

Static overload in VVC^{+}mode

When the frequency converter is overloaded (the torque limit in 4-16 Torque Limit Motor Mode/4-17 Torque Limit Generator Mode is reached), the controls reduces the output frequency to reduce the load. If the overload is excessive, a current could occur that makes the frequency converter cut out after approx. 5-10 s .

Operation within the torque limit is limited in time (0-60 s) in 14-25 Trip Delay at Torque Limit.

2.16.1 Motor Thermal Protection

Danfoss uses motor thermal protection to keep the motor from being overheated. It is an electronic feature that simulates a bimetal relay based on internal measurements. The characteristic is shown in Illustration 2.26

Illustration 2.26 Motor Thermal Protection

In Illustration 2.26, the X -axis is showing the ratio between $I_{\text {motor }}$ and $I_{\text {motor }}$ nominal. The Y-axis is showing the time in seconds before the ETR cuts off and trips the frequency converter. The curves are showing the characteristic nominal speed at twice the nominal speed and at 0.2 x the nominal speed.

At lower speed the ETR cuts off at a lower temperature due to less cooling of the motor. In that way, the motor is protected from being over heated even at low speed. The ETR feature is calculating the motor temperature based on actual current and speed. The calculated temperature is visible as a read out parameter in 16-18 Motor Thermal in the frequency converter.

The thermistor cut-out value is $>3 \mathrm{k} \Omega$.

Integrate a thermistor (PTC sensor) in the motor for winding protection.

Motor protection can be implemented using a range of techniques: PTC sensor in motor windings; mechanical thermal switch (Klixon type); or Electronic Thermal Relay (ETR).

Introduction
Design Guide

Illustration 2.27 Trip

Using a digital input and 24 V as power supply:
Example: The frequency converter trips when the motor temperature is too high.
Parameter set-up:
Set 1-90 Motor Thermal Protection to [2] Thermistor Trip
Set 1-93 Thermistor Source to [6] Digital Input 33

Illustration 2.28 Digital Input and 24 V Power Supply

Using a digital input and 10 V as power supply:
Example: The frequency converter trips when the motor temperature is too high.
Parameter set-up:
Set 1-90 Motor Thermal Protection to [2] Thermistor Trip Set 1-93 Thermistor Source to [6] Digital Input 33

Illustration 2.29 Digital Input and 10 V Power Supply

Using an analog input and 10 V as power supply: Example: The frequency converter trips when the motor temperature is too high.
Parameter set-up:
Set 1-90 Motor Thermal Protection to [2] Thermistor Trip Set 1-93 Thermistor Source to [2] Analog Input 54 Do not select a reference source.

Illustration 2.30 Analog Input 10 V Power Supply

Input Digital/analog	Supply Voltage V Cut-out Values	Threshold Cut-out Values
Digital	24	$<6.6 \mathrm{k} \Omega->10.8 \mathrm{k} \Omega$
Digital	10	$<800 \Omega->2.7 \mathrm{k} \Omega$
Analog	10	$<3.0 \mathrm{k} \Omega->3.0 \mathrm{k} \Omega$

NOTICE

Check that the chosen supply voltage follows the specification of the used thermistor element.

Introduction

Summary

With the torque limit feature, the motor is protected from being overloaded independent of the speed. With the ETR the motor is protected for being over heated and there is no need for any further motor protection. That means when the motor is heated up the ETR timer controls for how long time the motor can be running at the high temperature before it is stopped in order to prevent over heating. If the motor is overloaded without reaching the temperature where the ETR shuts off the motor, the torque limit is protecting the motor and application for being overloaded.

ETR is activated in 1-90 Motor Thermal Protection and is controlled in 4-16 Torque Limit Motor Mode. The time before the torque limit warning trips the frequency converter is set in 14-25 Trip Delay at Torque Limit.

Selection

3 Selection

3.1 Options and Accessories

Danfoss offers a wide range of options and accessories for the frequency converters.

3.1.1 General Purpose Input Output Module MCB 101

MCB 101 is used for extension of the number of digital and analog inputs and outputs of the frequency converter.

Contents: MCB 101 must be fitted into slot B in the frequency converter.

- MCB 101 option module
- Extended LCP frame
- Terminal cover

Illustration 3.1 MCB 101

Galvanic isolation in the MCB 101
If using the internal 24 V power supply (terminal 9) to switch digital inputs 7,8 or 9 , establish the connection between terminal 1 and 5 , which is illustrated in Illustration 3.2.

Selection
Design Guide

3.1.2 Digital Inputs - Terminal X30/1-4

Parameters for set-up: 5-16, 5-17 and 5-18				
Number of digital inputs	Voltage level	Voltage levels	Tolerance	Max. Input impedance
3	0-24V DC	PNP type: Common $=0 \mathrm{~V}$ Logic "0": Input < 5 V DC Logic "0": Input > 10 V DC NPN type: Common $=24 \mathrm{~V}$ Logic "0": Input > 19 V DC Logic "0": Input < 14 V DC	$\begin{aligned} & \pm 28 \mathrm{~V} \text { continuous } \\ & \pm 37 \mathrm{~V} \text { in minimum } 10 \\ & \mathrm{sec} . \end{aligned}$	Approx. $5 \mathrm{k} \Omega$

Table 3.1 Digital Inputs - Terminal X30/1-4

3.1.3 Analog Voltage Inputs - Terminal X30/10-12

Parameters for set-up: 6-3*, 6-4* and 16-76

Number of analog voltage inputs	Standardised input signal	Tolerance	Resolution	Max. Input impedance
2	$0-10 \mathrm{~V}$ DC	$\pm 20 \mathrm{~V}$ continuously	10 bits	Approx. $5 \mathrm{~K} \Omega$

Table 3.2 Analog Voltage Inputs - Terminal X30/10-12

3.1.4 Digital Outputs - Terminal X30/5-7

Parameters for set-up: 5-32 and 5-33			
Number of digital outputs	Output level	Tolerance	Max. impedance
2	0 V or 2 V DC	$\pm 4 \mathrm{~V}$	$\geq 600 \Omega$

Table 3.3 Digital Outputs - Terminal X30/5-7

3.1.5 Analog Outputs - Terminal X30/5+8

Parameters for set-up: 6-6* and 16-77	Output signal level	Tolerance	Max. impedance
Number of analog outputs	$0 / 4-20 \mathrm{~mA}$	$\pm 0.1 \mathrm{~mA}$	$<500 \Omega$
1			

Table 3.4 Analog Outputs - Terminal X30/5+8

Selection

3.1.6 Relay Option MCB 105

The MCB 105 option includes 3 pieces of SPDT contacts and must be fitted into option slot B.

Maximum terminal load (AC-1) ${ }^{1)}$ (Resistive load)	240 V AC 2 A
Maximum terminal load $(\mathrm{AC}-15)^{1)}$ (Inductive load @ $\cos \varphi 0.4)$	$240 \mathrm{~V} \mathrm{AC} \mathrm{0.2} \mathrm{~A}$
Maximum terminal load (DC-1) ${ }^{1)}$ (Resistive load)	24 V DC 1 A
Maximum terminal load (DC-13) ${ }^{1)}$ (Inductive load)	24 V DC 0.1 A
Minimum terminal load (DC)	5 V 10 mA
Max switching rate at rated load/min load	$6 \mathrm{~min}^{-1} / 20 \mathrm{~s} \mathrm{~s}^{-1}$

Table 3.5 Electrical Data

1) IEC 947 part 4 and 5

When the relay option kit is ordered separately the kit includes:

- Relay Module MCB 105
- Extended LCP frame and enlarged terminal cover
- Label for covering access to switches S201, S202, and S801
- Cable strips for fastening cables to relay module

How to add the MCB 105 option:

- See mounting instructions in the beginning of section Options and Accessories
- The power to the live part connections on relay terminals must be disconnected.
- Do not mix live parts with control signals (PELV).
- Select the relay functions in 5-40 Function Relay [6-8], 5-41 On Delay, Relay [6-8] and 5-42 Off Delay, Relay [6-8].
(Index [6] is relay 7 , index [7] is relay 8 , and index [8] is relay 9)

Illustration 3.3 Wiring the Terminals

Illustration 3.4 Wiring the Terminals

Illustration 3.5 Terminals

1	NC
2	Live part
3	PELV

Table 3.6 Legend to Illustration 3.10

AWARNING

Do not combine low voltage parts and PELV systems. At a single fault, the whole system can become dangerous to touch and it could result in death or serious injury.

Selection

3.1.7 24 V Back-Up Option MCB 107 (Option D)

External 24 V DC Supply

An external 24 V DC supply can be installed for lowvoltage supply to the control card and any option card installed. The external power supply enables full operation of the LCP (including the parameter setting) and fieldbuses without mains supplied to the power section.

Input voltage range	$24 \mathrm{~V} \mathrm{DC} \pm 15 \%$ (max. 37 V in 10 s)
Max. input current	2.2 A
Average input current	0.9 A
Max cable length	75 m
Input capacitance load	$<10 \mathrm{uF}$
Power-up delay	$<0.6 \mathrm{~s}$

Table 3.7 External 24 V DC Supply Specifications

The inputs are protected.

Terminal numbers:
Terminal 35: - external 24 V DC supply.
Terminal 36: + external 24 V DC supply.
Follow these steps:

1. Remove the LCP blind cover
2. Remove the terminal cover
3. Remove the cable de-coupling plate and the plastic cover underneath
4. Insert the 24 V DC backup external supply option in the option slot
5. Mount the cable de-coupling plate
6. Attach the terminal cover and the LCP or blind cover.

When MCB $107,24 \mathrm{~V}$ backup option is supplying the control circuit, the internal 24 V supply is automatically disconnected.

3.1.8 Analog I/O option MCB 109

The Analog I/O card is supposed to be used in the following cases:

- Providing battery back-up of clock function on control card
- As general extension of analog I/O selection available on control card, for example, for multizone control with three pressure transmitters
- Turning frequency converter into de-central I/O block supporting Building Management System with inputs for sensors and outputs for operating dampers and valve actuators
- Support Extended PID controllers with I/Os for set point inputs, transmitter/sensor inputs, and outputs for actuators.

Illustration 3.6 Principle Diagram for Analog I/O Mounted in the Frequency Converter

Analog I/O configuration

$3 \times$ Analog Inputs, capable of handling following:

- 0-10 V DC
- $\quad 0-20 \mathrm{~mA}$ (voltage input $0-10 \mathrm{~V}$) by mounting a 510Ω resistor across terminals (see NOTE)
- $\quad 4-20 \mathrm{~mA}$ (voltage input 2-10 V) by mounting a 510Ω resistor across terminals (see NOTE)
- Ni1000 temperature sensor of $1,000 \Omega$ at $0^{\circ} \mathrm{C}$. Specifications according to DIN43760
- Pt1000 temperature sensor of $1,000 \Omega$ at $0^{\circ} \mathrm{C}$. Specifications according to IEC 60751
$3 \times$ Analog Outputs supplying 0-10 V DC.

Selection

NOTICE

Note the values available within the different standard groups of resistors:
E12: Closest standard value is 470Ω, creating an input of 449.9Ω and 8.997 V .
E24: Closest standard value is 510Ω, creating an input of
486.4Ω and 9.728 V .
E48: Closest standard value is 511Ω, creating an input of 487.3Ω and 9.746 V.
E96: Closest standard value is 523Ω, creating an input of 498.2Ω and 9.964 V .

Analog inputs - terminal X42/1-6
Parameter group for read out: 18-3* Analog Readouts. For more information, consult the Programming Guide.
Parameter groups for set-up: 26-0* Analog I/O Mode, 26-1* Analog Input X42/1, 26-2* Analog Input X42/3 and 26-3* Analog Input X42/5. For more information, consult the Programming Guide.

$3 \times$ Analog inputs	Operating range	Resolution	Accuracy	Sampling	Max load	Impedance
Used as temperature sensor input	$-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	11 bits	$-50^{\circ} \mathrm{C}$ $\pm 1^{\circ} \mathrm{K}$ $+150^{\circ} \mathrm{C}$ $\pm 2{ }^{\circ} \mathrm{K}$	3 Hz	-	-
Used as voltage input	$0-10 \mathrm{~V} \mathrm{DC}$	10 bits	0.2% of full scale at cal. temperature	2.4 Hz	$+/-20 \mathrm{~V}$ continuously	Approximately $5 \mathrm{k} \Omega$

Table 3.8 Analog Inputs

When used for voltage, analog inputs are scalable by parameters for each input.

When used for temperature sensor, analog inputs scaling is preset to necessary signal level for specified temperature span.

When analog inputs are used for temperature sensors, it is possible to read out feedback value in both ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$.
When operating with temperature sensors, maximum cable length to connect sensors is 80 m non-screened/nontwisted wires.

Analog outputs - terminal X42/7-12

Parameter group for read out and write: 18-3*. For more information, consult the Programming Guide.
Parameter groups for set-up: 26-4* Analog Out X42/7, 26-5* Analog Out X42/9 and 26-6* Analog Out X42/11. For more information, consult the Programming Guide.

$3 \times$ Analog outputs	Output signal level	Resolution	Linearity	Max load
Volt	$0-10 \mathrm{~V}$ DC	11 bits	1% of full scale	1 mA

Table 3.9 Analog Outputs
Analog outputs are scalable by parameters for each output.

The function assigned is selectable via a parameter and have same options as for analog outputs on control card.

For a more detailed description of parameters, refer to the Programming Guide.

Parameter group for read out and write: 18-3*. For more information, consult the Programming Guide.
Parameter groups for set-up: 26-4* Analog Out X42/7, 26-5* Analog Out X42/9 and 26-6* Analog Out X42/11. For more information, consult the Programming Guide.

$3 \times$ Analog outputs	Output signal level	Resolution	Linearity	Max load
Volt	$0-10 \mathrm{~V}$ DC	11 bits	1% of full scale	1 mA

Table 3.10 Analog Outputs

Analog outputs are scalable by parameters for each output.

The function assigned is selectable via a parameter and have same options as for analog outputs on control card.

For a more detailed description of parameters, refer to the Programming Guide.

Real-time clock (RTC) with back-up
The data format of RTC includes year, month, date, hour, minutes, and weekday.

Accuracy of clock is better than $\pm 20 \mathrm{ppm}$ at $25^{\circ} \mathrm{C}$.
The built-in lithium back-up battery lasts on average for minimum 10 years, when the frequency converter is

Selection
operating at $40^{\circ} \mathrm{C}$ ambient temperature. If battery pack back-up fails, analog I/O option must be exchanged.

3.1.9 Extended Cascade Controller MCO 101 and Advanced Cascade Controller, MCO 102

Cascade control is a common control system used to control parallel pumps or fans in an energy efficient way.

The cascade controller option provides the capability to control multiple pumps configured in parallel in a way that makes them appear as a single larger pump.

To satisfy the required system output for flow or pressure when using cascade controllers, the individual pumps are automatically turned on (staged) and turned off (destaged) as needed. The speed of pumps connected to VLT ${ }^{\circledR}$ AQUA Drive FC 202 is also controlled to provide a continuous range of system output.

Illustration 3.7 Cascade Control of Multiple Pumps

The cascade controllers are optional hardware and software components that can be added to the VLT^{\circledR} AQUA Drive FC 202. It consists of an option board containing three relays that is installed in the B option location on the drive. Once options are installed, the parameters to support the cascade controller functions are available through the control panel in parameter group 27-
${ }^{* *}$ Extended Cascade Control. The extended cascade controller offers more functionality than the basic cascade controller. It can be used to extend the basic cascade with three relays and even to eight relays with the advanced cascade control card installed.

While the cascade controller is designed for pumping applications and this document describes the cascade controller for this application, it is also possible to use the cascade controllers for any application requiring multiple motors configured in parallel.

Master/follower operation

The cascade controller software runs from a single VLT AQUA Drive with the cascade controller option card installed. This frequency converter is referred to as the master drive. It controls a set of pumps each controlled by a frequency converter or connected directly to mains through a contactor or through a soft starter.

Each additional frequency converter in the system is referred to as a follower drive. These frequency converters do not need the cascade controller option card installed. They are operated in open loop mode and receive their speed reference from the master drive. The pumps connected to these frequency converters are referred to as variable speed pumps.
Each additional pump connected to mains through a contactor or through a soft starter is referred to as a fixed speed pump.
Each pump, variable speed or fixed speed, responds to a relay in the master drive. The frequency converter with the cascade controller option card installed has five relays available for controlling pumps. Two relays are standard in the frequency converter and an additional 3 relays are found on the option card MCO 101 or 8 relays and 7 digital inputs on option card MCO 102.

The difference between MCO 101 and MCO 102 is mainly the number of optional relays being made available for the frequency converter. When MCO 102 is installed, the relays option card MCB 105 can be mounted in the B-slot.

The cascade controller can control a mix of variable speed and fixed speed pumps. For simplicity of description within this manual, pressure and flow are used to describe the variable output of the set of pumps controlled by the cascade controller.

3.1.10 Extended Cascade Controller MCO 101

The MCO 101 option includes 3 pieces of change-over contacts and can be fitted into option slot B.

Maximum terminal load (AC)	240 V AC 2 A
Maximum terminal load (DC)	24 V DC 1 A
Minimum terminal load (DC)	5 V 10 mA
Maximum switching rate at rated load/min load	$6 \mathrm{~min}^{-1} / 20 \mathrm{~s}^{-1}$

Table 3.11 Electrical Data

AWARNING

Warning Dual supply

NOTICE

Place the label on the LCP frame as shown (UL approved).

How to add the MCO 101 option:

- The power to the frequency converter must be disconnected.
- The power to the live part connections on relay terminals must be disconnected.
- Remove the LCP, the terminal cover, and the cradle from the FC 202.
- Fit the MCO 101 option in slot B.
- Connect the control cables and relief the cables by the enclosed cable strips.
- Various systems must not be mixed.
- Fit the extended cradle and terminal cover.
- Replace the LCP
- Connect power to the frequency converter.

Illustration 3.8 Wiring the Terminals

Illustration 3.9 Wiring the Terminals

Illustration 3.10 Terminals

1	NC
2	Live part
3	PELV

Table 3.12 Legend to Illustration 3.10

AWARNING

Do not combine low voltage parts and PELV systems.

3.1.11 Brake Resistors

In applications where the motor is used as a brake, energy is generated in the motor and sent back into the frequency converter. If the energy cannot be transported back to the frequency converter, it increases the voltage in the DC-line. In applications with frequent braking and/or high inertia loads, this increase leads to an over voltage trip in the converter and finally a shutdown. Brake resistors are used to dissipate the excess energy resulting from the regenerative braking. The resistor is selected in respect to its ohmic value, its power dissipation rate, and its physical size. Danfoss offers a wide variety of different resistors that are specially designed to our frequency converters. See chapter 2.14 Control with Brake Function for the dimensioning of brake resistors. Code numbers can be found in chapter 4 How to Order.

Selection

3.1.12 Remote Mounting Kit for LCP

The LCP can be moved to the front of a cabinet by using the remote built-in kit. The enclosure is IP66. The fastening screws must be tightened with a torque of max. 1 Nm .

Enclosure	IP66 front
Max. cable length between LCP and unit	3 m
Communication std	RS-485

Table 3.13 Technical Data

Illustration 3.11

LCP Kits

Illustration 3.12 LCP Kit with Graphical LCP, Fasteners, 3 m
Cable, and Gasket.
Ordering No. 130B1113

Illustration 3.13 LCP Kit with Numerical LCP, Fasteners, and Gasket.
Ordering No. 130B1114

3.1.13 Input Filters

The 6-pulse diode rectifier causes the harmonic current distortion. The harmonic currents affect the installed serial equipment identical to reactive currents. Consequently, harmonic current distortion can result in overheating of the supply transformer, cables and so on. Depending on the impedance of the power grid, harmonic current distortion can lead to voltage distortion also affecting other equipment powered by the same transformer. Voltage distortion is increasing losses, causes premature aging and worst of all erratic operation. The built-in DC coil reduces most harmonics, but if more reduction is needed, Danfoss offers two types of passive filters.

The Danfoss AHF 005 and AHF 010 are advanced harmonic filters, not to be compared with traditional harmonic trap filters. The Danfoss harmonic filters have been specially designed to match the Danfoss frequency converters.

AHF 010 is reducing the harmonic currents to less than 10% and the AHF 005 is reducing harmonic currents to less than 5% at 2% background distortion and 2% imbalance.

3.1.14 Output Filters

The high-speed switching of the frequency converter produces some secondary effects, which influence the motor and the enclosed environment. Two different filter types, the dU/dt and the Sine-wave filters, are in place to address these side effects.

dU/dt filters

The combination of rapid voltage and current increase cause motor insulation stresses. The rapid energy changes can also be reflected back to the DC-line in the inverter and cause shut down. The dU/dt filter is designed to reduce the voltage rise time/the rapid energy change in the motor and by that intervention avoid premature aging and flashover in the motor insulation. $\mathrm{dU} / \mathrm{dt}$ filters have a positive influence on the radiation of magnetic noise in the cable that connects the frequency converter to the motor. The voltage wave form is still pulse shaped, but the $\mathrm{dU} / \mathrm{dt}$ ratio is reduced in comparison with the installation without filter.

Sine-wave filters

Sine-wave filters are designed to let only low frequencies pass. High frequencies are shunted away which results in a sinusoidal phase to phase voltage waveform and sinusoidal current waveforms.
With the sinusoidal waveforms, the use of special frequency converter motors with reinforced insulation is no longer needed. The acoustic noise from the motor is also damped as a consequence of the wave condition. Besides the features of the dU/dt filter, the sine-wave filter also reduces insulation stress and bearing currents in the motor thus leading to prolonged motor lifetime and longer periods between services. Sine-wave filters enable use of longer motor cables in applications where the motor is installed far from the frequency converter. The length is unfortunately limited because the filter does not reduce leakage currents in the cables.

3.2 High Power Options

ACAUTION

A door fan is required on the enclosure to remove the heat losses not contained in the back channel of the frequency converter and any additional losses generated from other components installed inside the enclosure. The total required air flow must be calculated so that the appropriate fans can be selected. Some enclosure manufacturers offer software for performing the calculations (that is, Rittal Therm software). If the frequency converter is the only heat generating component in the enclosure, the minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the D3h and D4h frequency converter is $391 \mathrm{~m}^{3} / \mathrm{h}(230 \mathrm{cfm})$. The minimum airflow required at an ambient temperature of $45^{\circ} \mathrm{C}$ for the E 2 frequency converter is $782 \mathrm{~m}^{3} / \mathrm{h}$ (460 cfm).

3.2.1 Installation of Back Channel Cooling Kit in Rittal Enclosures

This section describes the installation of IP00/IP20/chassis frequency converters with back channel cooling kits in Rittal enclosures. In addition to the enclosure, a floor mounting pedestal is required.

Illustration 3.14 Installation of IP00/IP20/Chassis in Rittal TS8 Enclosure.

The minimum enclosure dimension is:

- D3h frame: Depth 500 mm and width 400 mm
- D4h frame: Depth 500 mm and width 600 mm .
- E2 frame: Depth 600 mm and width 800 mm .

Selection

The maximum depth and width must comply with the installation requirements. When using multiple frequency converters in one enclosure, mount each on its own back panel and support each along the mid-section of the panel. The back channel cooling kits do not support the "in frame" mounting of the panel (see Rittal TS8 catalogue for details). The cooling kits listed in Table 3.14 are suitable for use only with IP00/IP20 chassis frequency converters in

Rittal TS8 IP 20 and UL and NEMA 1 and IP 54 and UL and NEMA 12 enclosures.

ACAUTION

For the E2 frames, it is important to mount the plate at the absolute rear of the Rittal enclosure due to the

Rittal TS-8 Enclosure	Frame D3h Kit Part No.	Frame D4hKit Part No.	Frame E2 Part No.
$1,800 \mathrm{~mm}$	176 F 3625	176 F 3628	Not possible
$2,000 \mathrm{~mm}$	176 F 3629	176 F 3630	176 F 1850
$2,200 \mathrm{~mm}$			176 F 0299

Table 3.14 Ordering Information

See the Duct Kit Instruction Manual, 175R5640, for further information regarding the E-frame kit.

External ducts

If more duct work is added externally to the Rittal cabinet the pressure drop in the ducting must be calculated. See chapter 5.2.7 Cooling and Airflow for further information.

3.2.2 Outside Installation/NEMA 3R Kit for Rittal Enclosures

Illustration 3.15 Cutaway Side View of Cabinet

This section is for the installation of NEMA 3R kits available for the frequency converter frames D3h, D4h and E2. These kits are designed and tested to be used with IP00/IP20/ Chassis versions of these frames in Rittal TS8 NEMA 3R or NEMA 4 enclosures. The NEMA-3R enclosure is an outdoor enclosure that provides a degree of protection against rain and ice. The NEMA-4 enclosure is an outdoor enclosure that provides a greater degree of protection against weather and hosed water.
The minimum enclosure depth is 500 mm (600 mm for E2 frame) and the kit is designed for a 600 mm (800 mm for E2 frame) wide enclosure. Other enclosure widths are possible, however more Rittal hardware is required. Consult the installation requirements for the maximum depth and width.

NOTICE

The current rating of frequency converters in D3h and D4h frames are de-rated by 3\%, when adding the NEMA 3R kit. Frequency converters in E2 frames require no derating.

Frame Size	Part Number	Instruction Number
D3h	176 F3633	177 R0460
D4h	176 F3634	177 R0461
E2	176F1852	176 R5922

Table 3.15 NEMA-3R Kit Ordering Information

Selection

3.2.3 Installation on Pedestal

This section describes the installation of a pedestal unit available for the frequency converters frames D1h, D2h, D5h, and D6h. The pedestal allows these frequency converters to be floor mounted. The front of the pedestal has openings for input air to the power components.

The frequency converter gland plate must be installed to provide adequate cooling air to the control components of the frequency converter and to maintain the IP21 (NEMA 1) or IP54 (NEMA 12) enclosure ratings.

Selection
Design Guide

The ordering numbers and heights for the pedestals are shown in Table 3.16

Frame Size	Part Number	Instruction Number	Height $[\mathrm{mm}]$
D1h	$176 F 3631$	177 R0452	400
D2h	$176 F 3632$	177 R0453	400
D5h/D6h	$176 F 3452$	$177 R 0500$	200
D7h/D8h	Included with unit	Included with unit	200
E1	Included with unit	Included with unit	200

Table 3.16 Pedestal Ordering Information

Illustration 3.17 Mounting of the Frequency Converter to the Pedestal

3.2.4 Installation of Input Plate Options

This section is for the field installation of input option kits for E-frame frequency converters.
Do not attempt to remove RFI filters from input plates. Removal of RFI filters from the input plates can cause damage.

NOTICE

Where RFI filters are available, there are two different types of RFI filters depending on the input plate combination and the RFI filters interchangeable. Field installable kits in certain cases are the same for all voltages.

	$380-480 \mathrm{~V}[\mathrm{~kW}]$ $380-500 \mathrm{~V}[\mathrm{~kW}]$	Fuses	Disconnect Fuses	RFI	RFI Fuses	RFI Disconnect Fuses
E1	$\begin{aligned} & \text { FC102/FC202: } 315 \\ & \text { FC302: } 250 \end{aligned}$	176F0253	176F0255	176F0257	176F0258	$176 F 0260$
	$\begin{aligned} & \text { FC102/FC202: 355-450 } \\ & \text { FC302: 315-400 } \\ & \hline \end{aligned}$	176F0254	176F0256	176F0257	176F0259	176F0262

Table 3.17 Input Options

	525-690 V [kW]	Fuses	Disconnect Fuses	RFI	RFI Fuses	RFI Disconnect Fuses
E1	FC102/FC202: $450-500$ FC302: $355-400$	176 F0253	176 F0255	Not Applicable	Not Applicable	Not Applicable
	FC102/FC202: $560-630$ FC302: $500-560$	176 F0254	176 F0258	Not Applicable	Not Applicable	Not Applicable

Table 3.18 Input Options

NOTICE

For further information, see the Instruction Sheet, $175 R 5795$

3.2.5 Installation of Mains Shield for Frequency Converters

This section is for the installation of a mains shield for the frequency converter. It is not possible to install in the IP00/ Chassis versions as these enclosures include a standard a metal cover. These shields satisfy VBG-4 requirements.

Ordering numbers:

Frame E1: 176F1851

NOTICE

For further information, see the Instruction Sheet, 175R5923

3.2.6 D-frame Options

3.2.6.1 Load Share Terminals

Load share terminals enable the connection of the DC circuits of several frequency converters. Load share terminals are available in IP20 frequency converters and extend out the top of the unit. A terminal cover, supplied with the frequency converter, must be installed to maintain the IP20 rating of the enclosure. Illustration 3.18 shows both the covered and uncovered terminals.

Illustration 3.18 Load Share or Regeneration Terminal with Cover (Left) and without Cover (Right)

3.2.6.2 Regeneration Terminals

Regen (regeneration) terminals can be supplied for applications that have a regenerative load. A regenerative unit, supplied by a third party, connects to the regen terminals so that power can be sent back onto the mains, resulting in energy savings. Regen terminals are available in IP20 frequency converters and extend out the top of the unit. A terminal cover, supplied with the frequency converter, must be installed to maintain the IP20 rating of the enclosure. Illustration 3.18 shows both the covered and uncovered terminals.

3.2.6.3 Anti-Condensation Heater

An anti-condensation heater can be installed inside the frequency converter to prevent condensation from forming inside the enclosure when the unit is turned off. The heater is controlled by customer-supplied 230 V AC. For best results, operate the heater only when the unit is not running.

A 2.5 amp time-delay fuse, such as the Bussmann
LPJ-21/2SP, is recommended to protect the heater.

3.2.6.4 Brake Chopper

A brake chopper can be supplied for applications that have a regenerative load. The brake chopper connects to a brake resistor, which consumes the braking energy and prevents an overvoltage fault on the DC bus. The brake chopper is automatically activated when the DC bus voltage exceeds a specified level, depending on the nominal voltage of the frequency converter.

3.2.6.5 Mains Shield

The mains shield is a Lexan cover installed inside the enclosure to provide protection according to VBG-4 accident-prevention requirements.

3.2.6.6 Ruggedized Printed Circuit Boards

Ruggedized boards are available for marine and other applications that experience higher than average vibration.

NOTICE

Ruggedized boards are required to meet marine approval requirements.

3.2.6.7 Heat Sink Access Panel

An optional heat sink access panel is available to facilitate cleaning of the heat sink. Debris buildup is typical in environments prone to airborne contaminants, such as the textile industry.

3.2.6.8 Mains Disconnect

The disconnect option is available in both varieties of option cabinets. The position of the disconnect changes based on the size of the options cabinet and whether other options are present. Table 3.19 provides more detail about which disconnects are used.

Selection
Design Guide

Voltage	Frequency converter model	Disconnect manufacturer and type
$380-500 \mathrm{~V}$	N110T5-N160T4	ABB OT400U03
	N200T5-N315T4	ABB OT600U03
$525-690$ V	N75KT7-N160T7	ABB OT400U03
	N200T7-N400T7	ABB OT600U03

Table 3.19 Mains Disconnect Information

3.2.6.9 Contactor

A customer-supplied 230 V AC $50 / 60 \mathrm{~Hz}$ signal powers the contactor.

Voltage	Frequency converter model	Contactor manufacturer and type	IEC utilisation category
	N110T5- N160T4	GE CK95BE311N	AC-3
	N200T5- N250T4	GE CK11CE311N	AC-3
	N315T4	GE CK11CE311N	AC-1
	N75KT7- N160T7	GE CK95BE311N	AC-3
	N200T7- N400T7	GE CK11CE311N	AC-3

Table 3.20 Contactor Information

NOTICE

In applications requiring UL listing, when the frequency converter is supplied with a contactor, the customer must provide external fusing to maintain the UL rating of the frequency converter and a short circuit current rating of 100,000 A. See chapter 5.3.8 Fuse Specifications for fuse recommendations.

3.2.6.10 Circuit Breaker

Table 3.21 provides details on the type of circuit breaker provided as an option with the various units and power ranges.

[V]	Frequency converter model	Circuit breaker manufacturer and type
$380-500$	N110T5-N132T5	ABB T5L400TW
	N160T5	ABB T5LQ400TW
	N200T5	ABB T6L600TW
	N250T5	ABB T6LQ600TW
	N315T5	ABB T6LQ800TW
525-690	N75KT7-N160T7	ABB T5L400TW
	N200T7-N315T7	ABB T6L600TW
	N400T7	ABB T6LQ600TW

Table 3.21 Circuit Breaker Information

3.2.7 Frame Size F Options

Space Heaters and Thermostat

Mounted on the cabinet interior of frame size F frequency converters, space heaters controlled via an automatic thermostat help control humidity inside the enclosure, prolonging component life in damp environments. The thermostat default settings turn on the heaters at $10^{\circ} \mathrm{C}$ $\left(50{ }^{\circ} \mathrm{F}\right.$) and turn them off at $15.6^{\circ} \mathrm{C}\left(60^{\circ} \mathrm{F}\right)$.

Cabinet light with power outlet

A light mounted on the cabinet interior of frame size F frequency converters increases visibility during servicing and maintenance. The housing includes a power outlet for temporarily powering tools or other devices. The power outlet is available in two voltages:

- $\quad 230 \mathrm{~V}, 50 \mathrm{~Hz}, 2.5 \mathrm{~A}, \mathrm{CE} / \mathrm{ENEC}$
- $120 \mathrm{~V}, 60 \mathrm{~Hz}, 5 \mathrm{~A}, \mathrm{UL} / \mathrm{cUL}$

Transformer tap setup

Transformer T1 requires that taps be set to the proper input voltage if any of the following options are installed:

- Space heaters and thermostat
- Cabinet light with power outlet

A 380-480/500 V frequency converter is initially set to the 525 V tap and a 525-690 V frequency converter is set to the 690 V tap to ensure no over-voltage of secondary equipment occurs if the tap is not changed before power is applied. See Table 3.22 to set the proper tap on TB3 located in the rectifier cabinet. For location in the frequency converter, see chapter 5.4.2 Power Connections.

Input voltage range [V]	Tap to select [V]
$380-440$	400
$441-490$	460
$491-550$	525
$551-625$	575
$626-660$	660
$661-690$	690

Table 3.22 Transformer tap

NAMUR terminals

NAMUR is an international association of automation technology users in the process industries, primarily chemical and pharmaceutical industries in Germany. Selection of this option provides terminals organised and labelled to the specifications of the NAMUR standard for drive input and output terminals, which requires an MCB 112PTC thermistor card and an MCB 113 extended relay card.

Residual current device (RCD)

Uses the core balance method to monitor ground fault currents in grounded and high-resistance grounded systems (TN and TT systems in IEC terminology). There is a pre-warning (50\% of main alarm set-point) and a main alarm set-point. Each set-point is associated with an SPDT

Selection
alarm relay for external use. The RCD requires an external "window-type" current transformer, which is supplied and installed by the customer. Features include:

- Integrated into the safe torque off circuit of the frequency converter
- IEC 60755 Type B device monitors AC, pulsed DC, and pure DC ground fault currents
- LED bar graph indicator of the ground fault current level from 10-100\% of the set-point
- Fault memory
- [Test/Reset] key

Insulation resistance monitor (IRM)
Monitors the insulation resistance in ungrounded systems (IT systems in IEC terminology) between the system phase conductors and ground. There is an ohmic pre-warning and a main alarm set-point for the insulation level. Each set-point is associated with an SPDT alarm relay for external use.

NOTICE

Only one insulation resistance monitor can be connected to each ungrounded (IT) system.

Features include:

- Integrated into the safe torque off circuit of the frequency converter
- LCD display of the ohmic value of the insulation resistance
- Fault Memory
- [Info], [Test] and [Reset] keys

IEC emergency stop with Pilz safety relay

Includes a redundant four-wire emergency-stop push button mounted on the front of the enclosure. A Pilz relay monitors it with the safe torque off circuit and the mains contactor located in the options cabinet.

Safe Stop with Pilz Relay

Provides a solution for the "Emergency Stop" option without the contactor in F-Frame frequency converters.

Manual motor starters

Provides 3-phase power for electric blowers that are often required for larger motors. Power for the starters is provided from the load side of any supplied contactor, circuit breaker, or disconnect switch. Power is fused before each motor starter, and is off when the incoming power to the frequency converter is off. If a 30 A fuse-protected circuit is ordered, only one starter is allowed, otherwise 2 starters may be selected. The starter is integrated into the safe torque off circuit.
Unit features include:

- Operation switch (on/off)
- Short-circuit and overload protection with test function
- Manual reset function

30 A, fuse-protected terminals

- 3-phase power matching incoming mains voltage for powering auxiliary customer equipment
- Not available if 2 manual motor starters are selected
- Terminals are off when the incoming power to the frequency converter is off
- Power for the fused protected terminals is provided from the load side of any supplied contactor, circuit breaker, or disconnect switch.

24 V DC power supply

- 5 A, 120 W, 24 V DC
- Protected against output over-current, overload, short circuits, and over-temperature
- For powering customer-supplied accessory devices such as sensors, PLC I/O, contactors, temperature probes, indicator lights, and/or other electronic hardware
- Diagnostics include a dry DC-ok contact, a green DC-ok LED, and a red overload LED

External temperature monitoring

Monitors temperatures of external system components such as the motor windings and/or bearings. This option includes 5 universal input modules. The modules are integrated into the safe torque off circuit and can be monitored via a fieldbus network. This requires the purchase of the safe torque off option and separate module/bus couplers.

Universal Inputs (5)

Signal types:

- RTD inputs (including PT100), 3-wire or 4-wire
- Thermocouple
- Analog current or analog voltage

Additional features:

- One universal output, configurable for analog voltage or analog current
- Two output relays (N.O.)
- Dual-line LC display and LED diagnostics
- Sensor lead wire break, short-circuit, and incorrect polarity detection
- Interface setup software

How to Order

4 How to Order

4.1 Ordering Form

4.1.1 Drive Configurator

It is possible to design a VLT ${ }^{\circledR}$ AQUA Drive FC 202 frequency converter according to the application requirements by using the ordering number system.

To order standard frequency converters and frequency converters with integral options, send a type code string describing the product to the Danfoss sales office. An example type code:

FC-202N132T4E21H2XGCXXXSXXXXAXBKCXXXXDX

The meaning of the characters in the string can be located in the pages containing the ordering numbers in chapter 4.1 Ordering Form. In the example above, a Profibus/LON works option and a general purpose I/O option is included in the frequency converter.

Ordering numbers for VLT AQUA Drive standard variants can also be located in the chapter chapter 4.2 Ordering Numbers.

Use the web-based Drive Configurator, to configure the right frequency converter for the right application and generate the type code string. The Drive Configurator automatically generates an eight-digit sales number for the local sales office. Furthermore,it's possible to establish a project list with several products and send it to a Danfoss sales representative.

The Drive Configurator can be found on the global internet site: www.danfoss.com/drives.

NOTICE

Type code information includes frame sizes A, B and C. For detailed information on these products, reference the relevant design guide.

4.1.2 Type Code String

Illustration 4.1 Type Code

Description	Position	Possible Choice
Product Group	$1-3$	FC
Drive Series	$4-6$	202
Generation Code	7	N
Power Rating	$8-10$	$75-400 \mathrm{~kW}$
Mains Voltage	$11-12$	T4: $380-480$ V AC T7: $525-690$ V AC

How to Order

Description	Position	Possible Choice
Enclosure	13-15	E20: IP20 (chassis - for installation in external enclosure) E21: IP21 (NEMA 1) E54: IP54 (NEMA 12) E2M: IP21 (NEMA 1) with mains shield E5M: IP54 (NEMA 12) with mains shield C20: IP20 (chassis - for installation in external enclosure) + stainless steel back channel H21: IP21 (NEMA 1) + heater H54: IP54 (NEMA 12) + heater
RFI filter	16-17	H2: RFI filter, class A2 (standard) H4: RFI filter class A1 ${ }^{1 \text { 1 }}$
Brake	18	X: No brake IGBT B: Brake IGBT mounted T: Safe stop U: Brake chopper + safe stop R: Regeneration terminals S: Brake + regeneration (IP 20 only)
Display	19	G: Graphical local control panel N : Numerical local control panel X: No local control panel
Coating PCB	20	C: Coated PCB R: Ruggedized PCB
Mains Option	21	X: No mains option 3: Mains disconnect and fuse 4: Mains contactor + fuses 7: Fuse A: Fuse and load sharing (IP20 only) D: Load share terminals (IP20 only) E: Mains disconnect + contactor + fuses J: Circuit breaker + fuses
Adaptation	22	X: Standard cable entries Q: Heatsink access panel
Adaptation	23	X: No adaptation
Software release	24-27	Actual software
Software language	28	
The various options are described further in this Design Guide. 1): Available for all D frames.		

Table 4.1 Ordering Type Code for D-frame Frequency Converters

Description	Pos	Possible choice
Product group	$1-3$	FC
Drive series	$4-6$	202
Power rating	$8-10$	$450-630 \mathrm{~kW}$
Phases	11	Three phases (T)
Mains voltage	$11-$	T 4: 380-500 VAC T 7: 525-690 VAC
Enclosure	12	E00: IP00/Chassis - for installation in external enclosure C00: IP00/Chassis (for installation in external enclosure) w/ stainless steel back channel E21: IP 21/NEMA Type 1 E54: IP 54/NEMA Type 12 E2M: IP 21/NEMA Type 1 with mains shield E5M: IP 54/NEMA Type 12 with mains shield

How to Order
Design Guide

Description	Pos	Possible choice
RFI filter	$\begin{aligned} & \hline 16- \\ & 17 \end{aligned}$	H2: RFI filter, class A2 (standard) H4: RFI filter class A1 ${ }^{1)}$
Brake	18	B: Brake IGBT mounted X: No brake IGBT R: Regeneration terminals
Display	19	G: Graphical Local Control Panel LCP N: Numerical Local Control Panel (LCP) X: No Local Control Panel (D frames IP00 and IP 21 only)
Coating PCB	20	C: Coated PCB
Mains option	21	X: No mains option 3: Mains disconnect and Fuse 5: Mains disconnect, Fuse, and Load sharing 7: Fuse A: Fuse and Load sharing D: Load sharing
Adaptation	22	Reserved
Adaptation	23	Reserved
Software release	$\begin{aligned} & \hline 24- \\ & 27 \end{aligned}$	Actual software
Software language	28	
A options	29-30	AX: No options A0: MCA 101 Profibus DP V1 A4: MCA 104 DeviceNet AN: MCA 121 Ethernet IP
B options	31-32	BX: No option BK: MCB 101 General purpose I/O option BP: MCB 105 Relay option BO:MCB 109 Analogue I/O option BY: MCO 101 Extended Cascade Control
C0 options	33-34	CX: No options
C_{1} options	35	X: No options 5: MCO 102 Advanced Cascade Control
C option software	36-37	XX: Standard software
D options	38-39	DX: No option D0: DC backup
The various options are described further in this Design Guide.		
1): Available for all E frames 380-480/500 VAC only		

Table 4.2 Ordering Type Code for E-Frame Frequency Converters

Description	Pos	Possible choice
Product group	$1-3$	FC
Drive series	$4-6$	202
Power rating	$8-10$	$500-1200 \mathrm{~kW}$
Mains voltage	$11-$	T 4: $380-480 \mathrm{~V} \mathrm{AC}$
	12	T 7: $525-690 \mathrm{~V} \mathrm{AC}$

How to Order

Description	Pos	Possible choice
Enclosure	$\begin{aligned} & \hline 13- \\ & 15 \end{aligned}$	E21: IP 21/NEMA Type 1 E54: IP 54/NEMA Type 12 L2X: IP21/NEMA 1 with cabinet light \& IEC 230 V power outlet L5X: IP54/NEMA 12 with cabinet light \& IEC 230 V power outlet L2A: IP21/NEMA 1 with cabinet light \& NAM 115 V power outlet L5A: IP54/NEMA 12 with cabinet light \& NAM 115 V power outlet H21: IP21 with space heater and thermostat H54: IP54 with space heater and thermostat R2X: IP21/NEMA1 with space heater, thermostat, light \& IEC 230 V outlet R5X: IP54/NEMA12 with space heater, thermostat, light \& IEC 230 V outlet R2A: IP21/NEMA1 with space heater, thermostat, light, \& NAM 115 V outlet R5A: IP54/NEMA12 with space heater, thermostat, light, \& NAM 115 V outlet
RFI filter	$\begin{aligned} & \hline 16- \\ & 17 \end{aligned}$	B2: 12-pulse with class A2 RFI BE: 12-pulse with RCD/A2 RFI BH: 12-pulse with IRM/A1 RFI BG: 12-pulse with IRM/A2 RFI B4: 12-pulse with class A1 RFI BF: 12-pulse with RCD/A1 RFI BH: 12-pulse with IRM/A1 RFI H2: RFI filter, class A2 (standard) H4: RFI filter, class A1 ${ }^{2,3)}$ HE: RCD with Class A2 RFI filter ${ }^{2)}$ HF: RCD with class A1 RFI filter ${ }^{2,3)}$ HG: IRM with Class A2 RFI filter ${ }^{2)}$ HH: IRM with class A1 RFI filter ${ }^{2,3)}$ HJ: NAMUR terminals and class A2 RFI filter ${ }^{1 \text { 1) }}$ HK: NAMUR terminals with class A1 RFI filter ${ }^{1,2,3)}$ HL: RCD with NAMUR terminals and class A2 RFI filter ${ }^{1,2)}$ HM: RCD with NAMUR terminals and class A1 RFI filter ${ }^{1,2,3)}$ HN: IRM with NAMUR terminals and class A2 RFI filter ${ }^{1,2)}$ HP: IRM with NAMUR terminals and class A1 RFI filter ${ }^{1,2,3 \text {) }}$
Brake	18	B: Brake IGBT-mounted C: Safe stop with Pilz safety relay D: Safe stop with Pilz safety relay and brake IGBT E: Safe stop with Pilz safety relay and regeneration terminals X: No brake IGBT R: Regeneration terminals M: IEC Emergency stop push-button (with Pilz safety relay) ${ }^{4)}$ N : IEC Emergency stop push button with brake IGBT and brake terminals ${ }^{4)}$ P: IEC Emergency stop push button with regeneration terminals ${ }^{4)}$
Display	19	G: Graphical Local Control Panel LCP
Coating PCB	20	C: Coated PCB
Mains option	21	X: No mains option 7: Fuse $3^{2)}$: Mains disconnect and fuse $5^{2)}$: Mains disconnect, fuse, and load sharing A: Fuse and Load sharing D: Load sharing E: Mains disconnect, contactor \& fuses ${ }^{2)}$ F: Mains circuit breaker, contactor \& fuses ${ }^{2)}$ G: Mains disconnect, contactor, loadsharing terminals \& fuses ${ }^{2)}$ H: Mains circuit breaker, contactor, loadsharing terminals \& fuses ${ }^{2)}$ J: Mains circuit breaker \& fuses ${ }^{2)}$ K: Mains circuit breaker, loadsharing terminals \& fuses ${ }^{2)}$

How to Order
Design Guide

A options	$29-30$	AX: No options A0: MCA 101 Profibus DP V1 A4: MCA 104 DeviceNet AN: MCA 121 Ethernet IP
B options	$31-32$	BX: No option BK: MCB 101 General purpose I/O option BP: MCB 105 Relay option BO:MCB 109 Analogue I/O option BY: MCO 101 Extended Cascade Control
Co options	$33-34$	CX: No options
C_{1} options	X: No options 5: MCO 102 Advanced Cascade Control	
C option software	$36-37$	XX: Standard software
D options	DX: No option D0: DC backup	
The various options are described further in this Design Guide.		

How to Order

4.2 Ordering Numbers

4.2.1 Ordering Numbers: Options and Accessories

Type	Description	Ordering no.	
Miscellaneous hardware			
Profibus D-Sub 9	Connector kit for IP20	130 B 1112	
MCF 103	USB Cable 350 mm , IP55/66	130B1155	
MCF 103	USB Cable 650 mm , IP55/66	130B1156	
Terminal blocks	Screw terminal blocks for replacing spring loaded terminals 1 pc 10 pin 1 pc 6 pin and 1 pc 3 pin connectors	130 B 1116	
LCP			
LCP 101	Numerical Local Control Panel (NLCP)	130B1124	
LCP 102	Graphical Local Control Panel (GLCP)	130B1107	
LCP cable	Separate LCP cable, 3 m	175Z0929	
LCP kit	Panel mounting kit including graphical LCP, fasteners, 3 m cable and gasket	130 B 1113	
LCP kit	Panel mounting kit including numerical LCP, fasteners and gasket	130B1114	
LCP kit	Panel mounting kit for all LCPs including fasteners, 3 m cable and gasket	130 B 1117	
LCP kit	Panel mounting kit for all LCPs including fasteners and gasket without cable	130 B 1170	
LCP kit	Panel mounting kit for all LCPs including fasteners, 8 m cable, glands and gasket for IP55/66 enclosures	130 B 1129	
Options for Slot A Uncoated/Coated		Uncoated	Coated
MCA 101	Profibus option DP V0/V1	130B1100	130B1200
MCA 104	DeviceNet option	130B1102	130B1202
MCA 108	LON works	130B1106	130B1206
Options for Slot B			
MCB 101	General purpose Input Output option	130B1125	130B1212
MCB 105	Relay option	130 B 1110	130B1210
MCB 109	Analog I/O option	130B1143	130B1243
MCB 114	PT 100 / PT 1000 sensor input	130 B 1172	10B1272
MCO 101	Extended Cascade Control	130 B 1118	130B1218
Option for Slot C			
MCO 102	Advanced Cascade Control	130B1154	130B1254
Option for Slot D			
MCB 107	24 V DC back-up	130B1108	130B1208

Table 4.4 Ordering Numbers: Options and Accessories

How to Order Design Guide

Type	Description	Ordering no.	
External Options			
Ethernet IP	Ethernet	130B1119	130B1219
Spare Parts			
Control board VLT ${ }^{\circledR}$ AQUA Drive FC 202	With Safe Stop Function		130B1167
Control board VLT ${ }^{\circledR}$ AQUA DriveFC 202	Without Safe Stop Function		130B1168
Accessory bag Control Terminals		$130 \mathrm{B0295}$	
1) Only IP21/> 11 kW			

Table 4.5 Ordering Numbers: Options and Accessories

Options can be ordered as factory built-in options, see ordering information.
For information on fieldbus and application option compatibility with older software versions, contact your Danfoss supplier.

4.2.2 Advanced Harmonic Filters

Harmonic filters are used to reduce mains harmonics:

- AHF 010: 10% current distortion
- AHF 005: 5\% current distortion

For detailed information on advanced harmonic filters, see the Advanced Harmonic Filters Design Guide.

$\begin{aligned} & \text { Code } \\ & \text { number } \\ & \text { AHF005 } \\ & \text { IP00 } \\ & \text { IP20 } \end{aligned}$	Code number AHF010 IPOO IP20	Filter current rating [A]	Typical motor [kW]	VLT model and current ratings		Losses		Acoustic noise	Frame size	
						AHF005	AHF010			
				[kW]	[A]	[W]	[W]	[dBA]	AHF005	AHF010
$\begin{array}{\|l\|} \hline \text { 130B1446 } \\ \text { 130B1251 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B1295 } \\ \text { 130B1214 } \end{array}$	204	110	N110	204	1080	742	<75	X6	X6
$\begin{array}{\|l\|} \hline \text { 130B1447 } \\ \text { 130B1258 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B1369 } \\ \text { 130B1215 } \end{array}$	251	132	N132	251	1195	864	<75	X7	X7
$\begin{array}{\|l\|} \hline \text { 130B1448 } \\ \text { 130B1259 } \end{array}$	$\begin{array}{\|l\|} \hline 130 \mathrm{~B} 1370 \\ \text { 130B1216 } \end{array}$	304	160	N160	304	1288	905	<75	X7	X7
$\begin{array}{\|l\|} \hline \text { 130B3153 } \\ \text { 130B3152 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B3151 } \\ \text { 130B3136 } \end{array}$	325		ing for		1406	952	<75	X8	X7
$\begin{array}{\|l\|} \hline \text { 130B1449 } \\ \text { 130B1260 } \end{array}$	$\begin{aligned} & \hline \text { 130B1389 } \\ & \text { 130B1217 } \end{aligned}$	381	200	N200	381	1510	1175	<77	X8	X7
$\begin{array}{\|l\|} \hline \text { 130B1469 } \\ \text { 130B1261 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B1391 } \\ \text { 130B1228 } \end{array}$	480	250	N250	472	1852	1542	<77	X8	X8
$\begin{aligned} & 2 \times 130 \mathrm{~B} 1448 \\ & 2 \times 130 \mathrm{~B} 1259 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \times 130 B 1370 \\ 2 \times 130 B 1216 \end{array}$	608	315	N315	590	2576	1810	<80		

Table 4.6 Advanced Harmonic Filters 380-415 V, 50 Hz, D-frame

How to Order

Code number AHF005 IPOO IP20	Code number AHF010 IPOO IP20	Filter current rating[A]	Typical motor [kW]	VLT model and current ratings		Losses		Acoustic noise	Frame size	
						AHF005	AHF010			
				[kW]	[A]	[W]	[W]	[dBA]	AHF005	AHF010
$\begin{array}{\|l\|} \hline 2 \times 130 \mathrm{~B} 3153 \\ 2 \times 130 \mathrm{~B} 3152 \end{array}$	$\begin{array}{\|l\|} \hline 2 \times 130 B 3151 \\ 2 \times 130 B 3136 \end{array}$	650	355	P355	647	2812	1904	<80		
$\begin{aligned} & \text { 130B1448+130B1449 } \\ & \text { 130B1259+130B1260 } \end{aligned}$	$\begin{aligned} & \text { 130B1370+130B1389 } \\ & \text { 130B1216+130B1217 } \end{aligned}$	685	400	P400	684	2798	2080	<80		
$\begin{aligned} & 2 \times 130 \mathrm{~B} 1449 \\ & 2 \times 130 \mathrm{~B} 1260 \end{aligned}$	$\begin{aligned} & 2 \times 130 \mathrm{~B} 1389 \\ & 2 \times 130 \mathrm{~B} 1217 \end{aligned}$	762	450	P450	779	3020	2350	<80		
$\begin{array}{\|l} \hline \text { 130B1449+130B1469 } \\ \text { 130B1260+130B1261 } \\ \hline \end{array}$	$\begin{aligned} & \text { 130B1389+130B1391 } \\ & \text { 130B1217+130B1228 } \end{aligned}$	861	500	P500	857	3362	2717	<80		
$\begin{aligned} & 2 \times 130 \mathrm{~B} 1469 \\ & 2 \times 130 \mathrm{~B} 1261 \end{aligned}$	$\begin{aligned} & 2 \times 130 \mathrm{~B} 1391 \\ & 2 \times 130 \mathrm{~B} 1228 \end{aligned}$	960	560	P560	964	3704	3084	<80		
$\begin{aligned} & 3 \times 130 \mathrm{~B} 1449 \\ & 3 \times 130 \mathrm{~B} 1260 \end{aligned}$	$\begin{aligned} & 3 \times 130 \mathrm{~B} 1389 \\ & 3 \times 130 \mathrm{~B} 1217 \end{aligned}$	1140	630	P630	1090	4530	3525	<80		
$\begin{aligned} & 2 \times 130 \text { B1449+130B1469 } \\ & 2 \times 130 \text { B1260+130B1261 } \end{aligned}$	$\begin{aligned} & 2 \times 130 \text { B } 1389+130 \text { B1391 } \\ & 2 \times 130 \text { B1217+130B1228 } \end{aligned}$	1240	710	P710	1227	4872	3892	<80		
$\begin{array}{\|l\|} \hline 3 \times 130 B 1469 \\ 3 \times 1301261 \end{array}$	$\begin{aligned} & 3 \times 130 \mathrm{~B} 1391 \\ & 3 \times 130 \mathrm{~B} 1228 \end{aligned}$	1440	800	P800	1422	5556	4626	<80		
$2 \times 130 B 1449+2 \times 130$ B1469 $2 \times 130 B 1260+2 \times 130 B 1261$	$\begin{aligned} & 2 \times 130 \text { B } 1389+2 \times 130 \text { B1391 } \\ & 2 \times 130 \text { B1217+2×130B1228 } \end{aligned}$	1720	1000	P1000	1675	6724	5434	<80		

Table 4.7 Advanced Harmonic Filters $\mathbf{3 8 0} \mathbf{- 4 1 5}$ V, $50 \mathrm{~Hz}, \mathrm{E}$ - and F-frames

Code number AHF005 IP00 IP20	Code number AHF010 IPOO IP20	Filter current rating [A]	Typical motor [kW]	VLT model and current ratings		Losses		Acoustic noise	Frame size	
						AHF005	AHF010			
				[kW]	[A]	[W]	[W]	[dBA]	AHF005	AHF010
$\begin{array}{\|l\|} \hline 130 \text { B3131 } \\ \text { 130B2869 } \end{array}$	$\begin{aligned} & \text { 130B3090 } \\ & \text { 130B2500 } \end{aligned}$	204	110	N110	204	1080	743	<75	X6	X6
$\begin{aligned} & \text { 130B3132 } \\ & \text { 130B2870 } \end{aligned}$	$\begin{aligned} & \text { 130B3091 } \\ & \text { 130B2700 } \end{aligned}$	251	132	N132	251	1194	864	<75	X7	X7
$\begin{aligned} & \text { 130B3133 } \\ & \text { 130B2871 } \end{aligned}$	$\begin{aligned} & \text { 130B3092 } \\ & \text { 130B2819 } \end{aligned}$	304	160	N160	304	1288	905	<75	X8	X7
$\begin{array}{\|l\|} \hline \text { 130B3157 } \\ \text { 130B3156 } \end{array}$	$\begin{aligned} & \hline 130 \mathrm{~B} 3155 \\ & \text { 130B3154 } \end{aligned}$	325		ing for		1406	952	<75	X8	X7
$\begin{array}{\|l\|} \hline 130 \text { B3134 } \\ \text { 130B2872 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B3093 } \\ \text { 130B2855 } \end{array}$	381	200	N200	381	1510	1175	<77	X8	X7
$\begin{array}{\|l\|} \hline 130 \text { B3135 } \\ 130 \text { B2873 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B3094 } \\ \text { 130B2856 } \end{array}$	480	250	N250	472	1850	1542	<77	X8	X8
$\begin{array}{\|l\|} \hline 2 \times 130 \mathrm{~B} 3133 \\ 2 \times 130 \mathrm{~B} 2871 \end{array}$	$\begin{array}{\|l\|} \hline 2 \times 130 \mathrm{~B} 3092 \\ 2 \times 130 \mathrm{~B} 2819 \end{array}$	608	315	N315	590	2576	1810	<80		

Table 4.8 Advanced Harmonic Filters, 380-415 V, 60 Hz, D-frame

How to Order
Design Guide

					odel/	Los	ses			
number AHF005 IP00	number AHF010 IPOO	current rating	motor	$\begin{aligned} & \text { cur } \\ & \text { rati } \end{aligned}$		AHF005	AHF010	noise	Fram	e size
IP20	IP20	[A]	[kW]	[kW]	[A]	[W]	[W]	[dBA]	AHF005	AHF010
$\begin{array}{\|l\|} \hline 2 \times 130 \text { B3157 } \\ 2 \times 130 \text { B3156 } \end{array}$	$\begin{aligned} & 2 \times 130 \text { B3155 } \\ & 2 \times 130 \text { B3154 } \end{aligned}$	650	315	P355	647	2812	1904	<80		
$\begin{aligned} & \hline 130 \text { B3133+130B3134 } \\ & \text { 130B2871+130B2872 } \end{aligned}$	$\begin{aligned} & \text { 130B3092+130B3093 } \\ & \text { 130B2819+130B2855 } \end{aligned}$	685	355	P400	684	2798	2080	<80		
$\begin{array}{\|l\|} \hline 2 \times 130 \text { B3134 } \\ 2 \times 130 \text { B2872 } \end{array}$	$\begin{aligned} & 2 \times 130 \text { B3093 } \\ & 2 \times 130 \text { B2855 } \end{aligned}$	762	400	P450	779	3020	2350	<80		
$\begin{aligned} & \hline 130 \text { B3134+130B3135 } \\ & 130 \text { B } 2872+130 \text { B } 3135 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 130 \text { B3093+130B3094 } \\ & 130 \text { B } 2855+130 \text { B2856 } \end{aligned}$	861	450	P500	857	3362	2717	<80		
$\begin{aligned} & \hline 2 \times 130 \text { B3135 } \\ & 2 \times 130 \text { B } 2873 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \times 130 \text { B3094 } \\ 2 \times 130 \text { B } 2856 \\ \hline \end{array}$	960	500	P560	964	3704	3084	<80		
$\begin{array}{\|l\|} \hline 3 \times 130 \text { B3134 } \\ 3 \times 130 \text { B2872 } \end{array}$	$\begin{aligned} & 3 \times 130 \text { B3093 } \\ & 3 \times 130 \text { B2855 } \end{aligned}$	1140	560	P630	1090	4530	3525	<80		
$\begin{aligned} & 2 \times 130 \text { B3134+130B3135 } \\ & 2 \times 130 \text { B } 2872+130 \text { B } 2873 \end{aligned}$	$\begin{aligned} & 2 \times 130 \text { B } 3093+130 \text { B3094 } \\ & 2 \times 130 \text { B } 2855+130 \text { B } 2856 \end{aligned}$	1240	630	P710	1227	4872	3892	<80		
$\begin{array}{\|l\|} \hline 3 \times 130 \text { B3135 } \\ 3 \times 130 \text { B2873 } \end{array}$	$\begin{aligned} & 3 \times 130 \text { B3094 } \\ & 3 \times 130 \text { B2856 } \end{aligned}$	1440	710	P800	1422	5556	4626	<80		
$\begin{aligned} & 2 \times 130 \text { B } 3134+2 \times 130 \text { B } 3135 \\ & 2 \times 130 \text { B } 2872+2 \times 130 \text { B } 2873 \end{aligned}$	2×130 B $3093+2 \times 130$ B3094 $2 \times 130 B 2855+2 \times 130$ B 2856	1722	800	P1M0	1675	6724	5434	<80		

Table 4.9 Advanced Harmonic Filters, $380-415$ V, 60 Hz , E- and F-frames

Code number AHF005 IP00 IP20	Code number AHF010 IP00 IP20	Filter current rating [A]	Typical motor [HP]	VLT model and current ratings		Losses		Acoustic noise	Frame size	
						AHF005	AHF010			
				[HP]	[A]	[W]	[W]	[dBA]	AHF005	AHF010
$\begin{array}{\|l\|} \hline \text { 130B1799 } \\ \text { 130B1764 } \end{array}$	$\begin{aligned} & \hline \text { 130B1782 } \\ & \text { 130B1496 } \end{aligned}$	183	150	N110	183	1080	743	<75	X6	X6
$\begin{array}{\|l\|} \hline \text { 130B1900 } \\ \text { 130B1765 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B1783 } \\ \text { 130B1497 } \end{array}$	231	200	N132	231	1194	864	<75	X7	X7
$\begin{array}{\|l\|} \hline 130 \mathrm{~B} 2200 \\ \text { 130B1766 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B1784 } \\ \text { 130B1498 } \end{array}$	291	250	N160	291	1288	905	<75	X8	X7
$\begin{array}{\|l\|} \hline 130 \mathrm{~B} 2257 \\ \text { 130B1768 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B1785 } \\ \text { 130B1499 } \end{array}$	355	300	N200	348	1406	952	<75	X8	X7
$\begin{array}{\|l\|} \hline \text { 130B3168 } \\ \text { 130B3167 } \end{array}$	$\begin{array}{\|l\|} \hline 130 \text { B3166 } \\ \text { 130B3165 } \end{array}$	380	Used for	ralleling	55 kW	1510	1175	<77	X8	X7
$\begin{array}{\|l\|} \hline \text { 130B2259 } \\ \text { 130B1769 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B1786 } \\ \text { 130B1751 } \end{array}$	436	350	N250	436	1852	1542	<77	X8	X8
$\begin{array}{\|l\|} \hline 130 \text { B1900+ } \\ 130 \text { B2200 } \\ 130 \text { B1765+ } \\ \text { 130B1766 } \\ \hline \end{array}$	$\begin{array}{\|l} \text { 130B1783+ } \\ \text { 130B1784 } \\ \text { 130B1497+ } \\ \text { 130B1498 } \end{array}$	522	450	N315	531	2482	1769	<80		

Table 4.10 Advanced Harmonic Filters $440-480$ V, 60 Hz, D-frame

How to Order
Design Guide

Code number AHF005 IP00/IP20	Code number AHF010 IP00/IP20	Filter current rating [A]	Typical motor	$\begin{aligned} & \text { VLT model/ } \\ & \text { current } \\ & \text { ratings } \\ & \hline \end{aligned}$		Losses		Acoustic noise $[\mathrm{dBA}]$	Frame size	
						AHF005	AHF010			
				[kW]	[A]	[W]	[W]		AHF005	AHF010
$\begin{array}{\|l\|} \hline 2 \times 130 \mathrm{~B} 2200 \\ 2 \times 130 \mathrm{~B} 1766 \end{array}$	$\begin{aligned} & \hline 2 \times 130 \mathrm{~B} 1784 \\ & 2 \times 130 \mathrm{~B} 1498 \end{aligned}$	582	500	P355	580	2576	1810	<80		
$\begin{aligned} & 130 \mathrm{~B} 2200+130 \mathrm{~B} 3166 \\ & 130 \mathrm{~B} 1766+130 \mathrm{~B} 3167 \end{aligned}$	$\begin{aligned} & 130 \mathrm{~B} 1784+130 \mathrm{~B} 3166 \\ & 130 \mathrm{~B} 1498+130 \mathrm{~B} 3165 \end{aligned}$	671	550	P400	667	2798	2080	<80		
$\begin{aligned} & 2 \times 130 B 2257 \\ & 2 \times 130 B 1768 \end{aligned}$	$\begin{aligned} & 2 \times 130 \mathrm{~B} 1785 \\ & 2 \times 130 \mathrm{~B} 1499 \end{aligned}$	710	600	P450	711	2812	1904	<80		
$\begin{array}{\|l\|} \hline 2 \times 130 \mathrm{~B} 3168 \\ 2 \times 130 \mathrm{~B} 3167 \end{array}$	$\begin{aligned} & 2 \times 130 \mathrm{~B} 3166 \\ & 2 \times 130 \mathrm{~B} 3165 \end{aligned}$	760	650	P500	759	3020	2350	<80		
$\begin{array}{\|l\|} \hline 2 \times 130 \text { B2259 } \\ 2 \times 130 \text { B1769 } \\ \hline \end{array}$	$\begin{aligned} & \hline 2 \times 130 \mathrm{~B} 1786 \\ & 2 \times 130 \mathrm{~B} 1751 \end{aligned}$	872	750	P560	867	3704	3084	<80		
$\begin{aligned} & 3 \times 130 \mathrm{~B} 2257 \\ & 3 \times 130 \mathrm{~B} 1768 \end{aligned}$	$\begin{aligned} & 3 \times 130 \mathrm{~B} 1785 \\ & 3 \times 130 \mathrm{~B} 1499 \end{aligned}$	1065	900	P630	1022	4218	2856	<80		
$\begin{array}{\|l\|} \hline 3 \times 130 \text { B3168 } \\ 3 \times 130 \text { B3167 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \times 130 \mathrm{~B} 3166 \\ 3 \times 130 \mathrm{~B} 3165 \\ \hline \end{array}$	1140	1000	P710	1129	4530	3525	<80		
$\begin{aligned} & 3 \times 130 \mathrm{~B} 2259 \\ & 3 \times 130 \mathrm{~B} 1769 \end{aligned}$	$\begin{aligned} & 3 \times 130 \mathrm{~B} 1786 \\ & 3 \times 130 \mathrm{~B} 1751 \end{aligned}$	1308	1200	P800	1344	5556	4626	<80		
$\begin{aligned} & 2 \times 130 \text { B } 2257+2 \times 130 \text { B } 2259 \\ & 2 \times 130 \text { B1768+2×130B1768 } \end{aligned}$	2×130 B17852×130B1785 $+2 \times 130$ B1786 2×130 B1499 $2 \times 130 B 1751$	1582	1350	P1M0	1490	6516	5988	<80		

Table 4.11 Advanced Harmonic Filters, $440-480$ V, 60 Hz, E- and F-frames

Code number AHF005 IP00/ IP20	Code number AHF010 IP00/ IP20	Filter current rating 50 Hz $[\mathrm{~A}]$	Typical motor	VLT model and current ratings		Losses		Acoustic noise [dBa]	Frame size	
						AHF005	AHF010			
			[HP]	[kW]	[A]	[W]	[W]		AHF005	AHF010
$\begin{array}{\|l\|} \hline 130 \text { B5269 } \\ \text { 130B5254 } \end{array}$	$\begin{aligned} & 130 \mathrm{~B} 5237 \\ & 130 \mathrm{~B} 5220 \end{aligned}$	87	75	N75K	85	962	692	<72	X6	X6
$\begin{array}{\|l\|} \hline 130 \text { B5270 } \\ \text { 130B5255 } \end{array}$	$\begin{aligned} & \hline \text { 130B5238 } \\ & \text { 130B5221 } \end{aligned}$	109	100	N90K	106	1080	743	<72	X6	X6
$\begin{array}{\|l\|} \hline \text { 130B5271 } \\ \text { 130B5256 } \end{array}$	$\begin{aligned} & \hline \text { 130B5239 } \\ & \text { 130B5222 } \end{aligned}$	128	125	N110	124	1194	864	<72	X6	X6
$\begin{array}{\|l\|} \hline 130 \text { B5272 } \\ \text { 130B5257 } \end{array}$	$\begin{aligned} & 130 \mathrm{~B} 5240 \\ & \text { 130B5223 } \end{aligned}$	155	150	N132	151	1288	905	<72	X7	X7
$\begin{array}{\|l\|} \hline \text { 130B5273 } \\ \text { 130B5258 } \end{array}$	$\begin{aligned} & \hline \text { 130B5241 } \\ & \text { 130B5224 } \end{aligned}$	197	200	N160	189	1406	952	<72	X7	X7
$\begin{array}{\|l\|} \hline \text { 130B5274 } \\ \text { 130B5259 } \end{array}$	$\begin{array}{\|l\|} \hline \text { 130B5242 } \\ \text { 130B5225 } \end{array}$	240	250	N200	234	1510	1175	<75	X8	X8
$\begin{array}{\|l\|} \hline 130 \text { B5275 } \\ \text { 130B5260 } \end{array}$	$\begin{aligned} & 130 \mathrm{~B} 5243 \\ & \text { 130B5226 } \end{aligned}$	296	300	N250	286	1852	1288	<75	X8	X8
$\begin{array}{\|l\|} \hline 2 \times 130 B 5273 \\ 2 \times 130 B 5258 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 130 \text { B5244 } \\ 130 \text { B5227 } \\ \hline \end{array}$	366	350	N315	339	2812	1542	<75		X8
$\begin{array}{\|l\|} \hline 2 \times 130 B 5273 \\ 2 \times 130 B 5258 \end{array}$	$\begin{aligned} & \text { 130B5245 } \\ & \text { 130B5228 } \end{aligned}$	395	400	N400	395	2812	1852	<75		X8

Table 4.12 Advanced Harmonic Filters, 600 V, 60 Hz

How to Order
Design Guide

Code number AHF005 IP00/ IP20	Code number AHF010 IP00/ IP20	Filter current rating	Typical motor	VLT model and current ratings		Losses		Acoustic noise	Frame size	
		50 Hz				AHF005	AHF010			
		[A]	[HP]	[kW]	[A]	[W]	[W]	[dBa]	AHF005	AHF010
$\begin{array}{\|l\|} \hline 2 \times 130 \text { B5 } 274 \\ 2 \times 130 B 5259 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 2 \times 130 \text { B5 } 242 \\ 2 \times 130 \text { B } 225 \end{array}$	480	500	P500	482	3020	2350			
$\begin{aligned} & 2 \times 130 \text { B5 } 275 \\ & 2 \times 130 \text { B5 } 260 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \times 130 \text { B5 } 243 \\ 2 \times 130 \text { B } 226 \end{array}$	592	600	P560	549	3704	2576			
$\begin{array}{\|l\|} \hline 3 \times 130 \text { B5 } 274 \\ 3 \times 130 \text { B5 } 259 \end{array}$	$\begin{aligned} & 2 \times 130 \mathrm{~B} 5244 \\ & 2 \times 130 \mathrm{~B} 5227 \end{aligned}$	732	650	P630	613	4530	3084			
$\begin{aligned} & 3 \times 130 \text { B5 } 274 \\ & 3 \times 130 B 5259 \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \times 130 B 5244 \\ 2 \times 130 B 5227 \end{array}$	732	750	P710	711	4530	3084			
$\begin{aligned} & 3 \times 130 \text { B5 } 275 \\ & 3 \times 130 \text { B5260 } \end{aligned}$	$\begin{aligned} & 3 \times 130 \mathrm{~B} 5243 \\ & 3 \times 139 \mathrm{~B} 5226 \end{aligned}$	888	950	P800	828	5556	3864			
$\begin{aligned} & 4 \times 130 B 5274 \\ & 4 \times 130 B 5259 \end{aligned}$	$\begin{aligned} & 3 \times 130 \mathrm{~B} 5244 \\ & 3 \times 130 \mathrm{~B} 5227 \end{aligned}$	960	1050	P900	920	6040	4626			
$\begin{array}{\|l\|} \hline 4 \times 130 B 5275 \\ 4 \times 130 B 5260 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 3 \times 130 B 5244 \\ 3 \times 130 B 5227 \\ \hline \end{array}$	1098	1150	P1M0	1032	7408	4626			
	$\begin{aligned} & 4 \times 130 B 5244 \\ & 4 \times 130 B 5227 \end{aligned}$	1580	1350	P1M2	1227		6168			

Table 4.13 Advanced Harmonic Filters, 600 V, 60 Hz

Code number AHF005 IP00/ IP20	Code number AHF010 IP00/ IP20	Filter current	VLT model and current ratings						Losses		Acoustic noise	Frame size	
		50 Hz	Typical motor size	500-550 V		Typical motor size	551-690 V		AHF005	AHF010			
		[A]	[kW]	[kW]	[A]	[kW]	[kW]	[A]	[W]	[W]	[dBa]	AHF005	AHF010
130B5024	130B5325	77	45	N55K	71	75	N75K	76	841	488	<72	X6	X6
130 B 5169	130 B 5287	77	45	NSSK	71	75	N75K	76	841	488	<72	X6	X6
130 B 5025	130 B 5326	87	55	N75K	89				962	692	<72	X6	X6
130 B 5170	130 B 5288		55								< 72	X6	
130 B 5026	130 B 5327	109	75	N90K	110	90	N90K	104	1080	743	<72	X6	X6
130 B 5172	130B5289										< 2		
130 B 5028	130 B 5328	128	90	N110	130	110	N110	126	1194	864	<72	X6	X6
130 B 5195	130 B 5290	128	9	N10	130	110	N10	126	1194	864	< 2		
130 B 5029	130 B 5329	155	110	N132	158	132	N132	150	1288	905	<72	X7	X7
130 B 5196	130B5291	155	110	N132	158	132	N132	150	1288	905			
130 B 5042	130 B 5330	197	132	N160	198	160	N160	186	1406	952	<72	X7	X7
130 B 5197	130 B 5292	19	132	N160	198	160	N160	186	1406	952	<	X	X
$130 \mathrm{B5066}$	130 B 5331		160										
$130 \mathrm{B5198}$	130 B 5293						N200	234					
130 B 5076	130 B 5332	296	200									X8	
130 B 5199	130 B 5294												
2x130B5042	130 B 5333	366											
2x130B5197	130 B 5295							333					
2x130B5042	130 B 5334	395	315	N355	381	400			2812	1852			X8
$\begin{array}{\|l\|} \hline 130 \mathrm{~B} 5042 \\ +130 \mathrm{~B} 5066 \\ \hline \end{array}$	$\begin{aligned} & \hline 130 \text { B5330 } \\ & +130 \text { B5331 } \\ & \hline \end{aligned}$		55	N400	413	500	N400	395	2916	2127			
$\begin{array}{\|l\|} \hline 130 B 5197 \\ +130 B 5198 \end{array}$	$\begin{aligned} & \hline 130 \text { B5292 } \\ & +130 \text { B5293 } \end{aligned}$	437	355	N400	413	500	N400	395	2916	2127			

Table 4.14 Advanced Harmonic Filters, 500-690 V, 50 Hz

Table 4.15 Advanced Harmonic Filters, 500-690 V, 50 Hz

How to Order

Design Guide

4.2.3 Sine-Wave Filter Modules, $380-690$ V AC

$400 \mathrm{~V}, 50 \mathrm{~Hz}$		$460 \mathrm{~V}, 60 \mathrm{~Hz}$		$500 \mathrm{~V}, 50 \mathrm{~Hz}$		Frame size	Filter ordering number	
[kW]	[A]	[HP]	[A]	[kW]	[A]		IP00	IP23
90	177	125	160	110	160	D1h/D3h/D5h/D6h	130 B 3182	130 B 3183
110	212	150	190	132	190	D1h/D3h/D5h/D6h	130B3184	130B3185
132	260	200	240	160	240	D1h/D3h/D5h/D6h, D13		
160	315	250	302	200	302	D2h/D4h, D7h/D8h, D13	130 B 3186	130 B 3187
200	395	300	361	250	361	D2h/D4h,D7h/D8h, D13		
250	480	350	443	315	443	D2h/D4h, D7h, D8h, D13, E9, F8/F9	130B3188	130B3189
315	600	450	540	355	540	E1/E2, E9, F8/F9	130 B 3191	130 B 3192
355	658	500	590	400	590	E1/E2, E9, F8/F9		
400	745	600	678	500	678	E1/E2, E9, F8/F9	130 B 3193	130 B 3194
450	800	600	730	530	730	E1/E2, E9, F8/F9		
450	800	600	730	530	730	F1/F3, F10/F11, F18	2X130B3186	2X130B3187
500	880	650	780	560	780	F1/F3, F10/F11, F18	2X130B3188	2X130B3189
560	990	750	890	630	890	F1/F3, F10/F11, F18		
630	1120	900	1050	710	1050	F1/F3, F10/F11, F18	2X130B3191	2X130B3192
710	1260	1000	1160	800	1160	F1/F3, F10/F11, F18		
710	1260	1000	1160	800	1160	F2/F4, F12/F13	3X130B3188	3X130B3189
800	1460					F2/F4, F12/F13		
		1200	1380	1000	1380	F2/F4, F12/F13	3X130B3191	3X130B3192
1000	1720	1350	1530	1100	1530	F2/F4, F12/F13		

Table 4.16 Sine Wave Filter Modules, 380-500 V

How to Order

$525 \mathrm{~V}, 50 \mathrm{~Hz}$		$575 \mathrm{~V}, 60 \mathrm{~Hz}$		$690 \mathrm{~V}, 50 \mathrm{~Hz}$		Frame size	Filter ordering number	
[kW]	[A]	[HP]	[A]	[kW]	[A]		IP00	IP23
45	76	60	73	55	73	D1h/D3h/D5h/D6h	$130 \mathrm{B4116}$	$130 \mathrm{B4117}$
55	90	75	86	75	86	D1h/D3h/D5h/D6h	$130 \mathrm{B4118}$	$130 \mathrm{B4119}$
75	113	100	108	90	108	D1h/D3h/D5h/D6h	$130 \mathrm{B4118}$	$130 \mathrm{B4119}$
90	137	125	131	110	131	D1h/D3h/D5h/D6h	$130 \mathrm{B4121}$	$130 \mathrm{B4124}$
110	162	150	155	132	155	D1h/D3h/D5h/D6h		
132	201	200	192	160	192	D2h/D4h, D7h/D8h	130B4125	130B4126
160	253	250	242	200	242	D2h/D4h, D7h/D8h		
200	303	300	290	250	290	D2h/D4h, D7h/D8h	130B4129	130B4151
250	360	350	344	315	344	D2h/D4h, D7h/D8h, F8/F9		
		350	344	355	380	F8/F9	$130 \mathrm{B4152}$	130B4153
315	429	400	400	400	410	F8/F9		
		400	410			E1/E2, F8/F9	130B4154	130 B 4155
355	470	450	450	450	450	E1/E2, F8/F9		
400	523	500	500	500	500	E1/E2, F8/F9		
450	596	600	570	560	570	E1/E2, F8/F9	130B4156	130B4157
500	630	650	630	630	630	E1/E2, F8/F9		
500	659			630	630	F1/F3, F10/F11	2X130B4129	2X130B4151
		650	630			F1/F3, F10/F11	2X130B4152	2X130B4153
560	763	750	730	710	730	F1/F3, F10/F11		
670	889	950	850	800	850	F1/F3, F10/F11	2X130B4154	2X130B4155
750	988	1050	945	900	945	F1/F3, F10/F11		
750	988	1050	945	900	945	F2/F4, F12/F13	3X130B4152	3X130B4153
850	1108	1150	1060	1000	1060	F2/F4, F12/F13		
1000	1317	1350	1260	1200	1260	F2/F4, F12/F13	3X130B4154	3X130B4155

Table 4.17 Sine Wave Filter Modules 525-690 V

NOTICE

When using sine-wave filters, ensure that the switching frequency complies with filter specifications in 14-01 Switching Frequency.

See also Advanced Harmonic Filters Design Guide.

How to Order

Design Guide

4.2.4 Ordering Numbers: dU/dt Filters

Typical application ratings										Frame size	Filter ordering number	
380-480 V [T4]				525-690 V [T7]								
$\begin{gathered} 400 \mathrm{~V}, \\ 50 \mathrm{~Hz} \end{gathered}$		$\begin{aligned} & 460 \mathrm{~V}, \\ & 60 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 525 \mathrm{~V}, \\ & 50 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 575 \mathrm{~V}, \\ & 60 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} 690 \mathrm{~V}, \\ 50 \mathrm{~Hz} \end{gathered}$				
[kW]	[A]	[HP]	[A]	[kW]	[A]	[HP]	[A]	[kW]	[A]		IP00	IP23
90	177	125	160	90	137	125	131			D1h/D3h	130 B 2847	130B2848
110	212	150	190	110	162	150	155	110	131	D1h/D3h		
132	260	200	240	132	201	200	192	132	155	D1h/D3h, D2h/D4h, D13		
160	315	250	302	160	253	250	242	160	192	D2h/D4h, D13		
200	395	300	361	200	303	300	290	200	242	D2h/D4h, D13	130B2849	130 B 3850
250	480	350	443	250	360	350	344	250	290	D2h/D4h, D11 E1/E2, E9, F8/F9		
315	588	450	535	315	429	400	410	315	344	D2h/D4h, E9, F8/F9	130B2851	130B2852
355	658	500	590	355	470	450	450	355	380	E1/E2, E9, F8/F9		
								400	410	E1/E2, F8/F9		
								450	450	E1/E2, F8/F9	130B2853	130B2854
400	745	600	678	400	523	500	500	500	500	E1/E2, E9, F8/F9		
450	800	600	730	450	596	600	570	560	570	E1/E2, E9, F8/F9		
				500	630	650	630	630	630	E1/E2, F8/F9		
450	800	600	730							F1/F3, F10/F11, F18	2x130B28492	2x130B28502
500	880	650	780	500	659	650	630			F1/F3, F10/F11, F18		
								630^{2}	630^{2}	F1/F3, F10/F11	2x130B2851	2x130B2852
560	990	750	890	560	763	750	730	710	730	F1/F3, F10/F11, F18		
630	1120	900	1050	670	889	950	850	800	850	F1/F3, F10/F11, F18		
710	1260	1000	1160	750	988	1050	945			F1/F3, F10/F11, F18	2x130B2851	2x130B2852
								900	945	F1/F3, F10/F11	2x130B2853	2x130B2854
710	1260	1000	1160	750	988	1050	945			F2/F4, F12/F13	3x130B2849	3x130B2850
								900	945	F2/F4, F12/F13	$3 \times 130 B 2851$	3x130B2852
800	1460	1200	1380	850	1108	1150	1060	1000	1060	F2/F4, F12/F13		
1000	1720	1350	1530	1000	1317	1350	1260	1200	1260	F2/F4, F12/F13		
				1100	1479	1550	1415	1400	1415	F2/F4, F12/F13	3x130B2853	$3 \times 130 \mathrm{~B} 2854$

Table 4.18 dU/dt Filter Ordering Numbers

NOTICE

See also Output Filter Design Guide

How to Order

4.2.5 Ordering Numbers: Brake Resistors

For brake resistor selection information, refer to the Brake Resistor Design Guide
Use this table to determine the minimum resistance applicable to each frequency converter size.

380-480 V AC			
Drive data			
[T4]	Pm (NO) [kW]	Number of brake choppers ${ }^{1 /}$	$\mathrm{R}_{\text {min }}$
N110	110	1	3.6
N132	132	1	3
N160	160	1	2.5
N200	200	1	2
N250	250	1	1.6
N315	315	1	1.2
P355	355	1	1.2
P400	400	1	1.2
P500	500	2	0.9
P560	560	2	0.9
P630	630	2	0.8
P710	710	2	0.7
P800	800	3	0.6
P1M0	1000	3	0.5

Table 4.19 Brake Chopper Data, 380-480 V

525-690 V AC			
Drive data			
[T7]	Pm (NO) [kW]	Number of brake choppers ${ }^{1 /}$	$\mathrm{R}_{\text {min }}$
N75K	75	1	13.5
N90K	90	1	8.8
N110	110	1	8.2
N132	132	1	6.6
N160	160	1	4.2
N200	200	1	4.2
N250	250	1	3.4
N315	315	1	2.3
N400	400	1	2.3
P450	450	1	2.3
P500	500	1	2.1
P560	560	1	2
P630	630	1	2
P710	710	2	1.3
P800	800	2	1.1
P900	900	2	1.1
P1M0	1000	3	1
P1M2	1200	3	0.8
P1M4	1400	3	0.7

Table 4.20 Brake Chopper Data 525-690 V
$R_{\text {min }}=$ Minimum brake resistance that can be used with this frequency converter. If the frequency converter includes multiple brake choppers, the resistance value is the sum of all resisters in parallel
Rbr, nom=Nominal resistance required to achieve 150% braking torque.

1) Larger frequency converters include multiple inverter modules with a brake chopper in each inverter. Connect equal resistors to each brake chopper.

5 How to Install

5.1 Mechanical Installation

D1h	D2h	D3h	D4h	E1	E2	F1/F3	F2/F4
							F4 F2
IP21/54	IP21/54	IP20	IP20	IP21/54	IP00	$\underset{\infty}{\infty}$	
Bottom mounting hole:							
Top mounting locations:						IP21/54	IP21/54
	33 [1.3] $\varnothing 11$ [0.4]				Lifting eye:	Enclosure F1	Enclosure F2
Bottom mounting locations:		Bottom mounting locations:		Base p	e mount:	Enclosure F3	Enclosure F4

Mechanical dimensions											
Enclosure size [kW]		D1h	D2h	D3h*	D4h*	E1	E2*	F1	F2	F3	F4
380-480 V AC		110-160	200-315	110-160	200-315	315-450	315-450	500-710	800-1000	500-710	800-1000
525-690 V AC		45-160	200-400	45-160	200-400	450-630	450-630	710-900	1000-1400	710-900	1000-1400
IP		21/54	21/54	20	20	21/54	00	21/54	21/54	21/54	21/54
NEMA		Type 1/12	Type 1/12	Chassis	Chassis	Type 1/12	Chassis	Type 1/12	Type 1/12	Type 1/12	Type 1/12
Shipping dimensions [mm]											
Width		997	1,170	997	1,170	2,197	1,705	2,324	2,324	2,324	2,324
Height		587	587	587	587	840	831	1,569	1,962	2,159	2,559
Depth		460	535	460	535	736	736	927	927	927	927
Frequency Converter dimensions [mm]											
Height											
	A	901	1107	909	1122	2000	1547	2281	2281	2281	2281
Width											
	B	325	420	250	350	600	585	1400	1800	2000	2400
Depth											
	C	380	380	375	375	494	494	607	607	607	607
Dimensions brackets [mm/inch]											
Centre hole to back edge	a	Not Applicable				56/2.2	23/0.9				
Centre hole to top edge	b					25/1.0	25/1.0				
Hole diameter	c					25/1.0	25/1.0				
Top of mounting slot to bottom edge	d						27/1.1				
Width of mounting slot	e						13/0.5				
Bottom mounting hole from side edge	f	63/2.5	75/3.0	Not Applicable							
Bottom mounting hole from bottom edge	g	20/0.8	20/0.8								
Width of mounting slot	h	11/0.4	11/0.4								
Bottom mounting hole from side edge	k	Not Applicable		25/1.0	40/1.6	Not Applicable					
Bottom mounting hole from bottom edge	1			20/0.8	20/0.8						
Width of mounting slot	m			11/0.4	11/0.4						
Max weight [kg]		98	164	98	164	313	277	1017	1260	1318	1561
Contact Danfoss for more detailed information and CAD drawings for your own planning purposes. *Chassis drives are intended for installation in external enclosures											

[^1]How to Install
Design Guide

Frame size		F8	F9	F10	F11	F12	F13
		130BB690.10					
Enclosure protection	IP	21/54	21/54	21/54	21/54	21/54	21/54
	NEMA	Type 1/Type 12					
High overload rated power -160\% overload torque		$\begin{aligned} & \hline 315-450 \mathrm{~kW} \\ & (380-480 \mathrm{~V}) \\ & 450-630 \mathrm{~kW} \\ & (525-690 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \hline 315-350 \mathrm{~kW} \\ & (380-480 \mathrm{~V}) \\ & 450-630 \mathrm{~kW} \\ & (525-690 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \hline 500-710 \mathrm{~kW} \\ & (380-480 \mathrm{~V}) \\ & 710-900 \mathrm{~kW} \\ & (525-690 \mathrm{~V}) \end{aligned}$	$\begin{aligned} & \hline 500-710 \mathrm{~kW} \\ & (380-480 \mathrm{~V}) \\ & 710-900 \mathrm{~kW} \\ & (525-690 \mathrm{~V}) \end{aligned}$	$\begin{gathered} \hline 800-1000 \mathrm{~kW} \\ (380-480 \mathrm{~V}) \\ 1000-1400 \mathrm{~kW} \\ (525-690 \mathrm{~V}) \\ \hline \end{gathered}$	$\begin{gathered} \hline 800-1000 \mathrm{~kW} \\ (380-480 \mathrm{~V}) \\ 1000-1400 \mathrm{~kW} \\ (525-690 \mathrm{~V}) \end{gathered}$
Shipping dimensions [mm]	Height	2324	2324	2324	2324	2324	2324
	Width	970	1568	1760	2559	2160	2960
	Depth	1130	1130	1130	1130	1130	1130
Drive dimensions [mm]	Height	2204	2204	2204	2204	2204	2204
	Width	800	1400	1600	2200	2000	2600
	Depth	606	606	606	606	606	606
Max weight [kg]		447	669	893	1116	1037	1259

Table 5.3 Product Overview, 12-pulse Frequency Converters

NOTICE

The F-Frames are available with or without options cabinet. The F8, F10 and F12 consist of an inverter cabinet on the right and rectifier cabinet on the left. The F9, F11 and F13 have an additional options cabinet left of the rectifier cabinet. The F9 is an F8 with an additional options cabinet. The F11 is an F10 with an additional options cabinet. The F13 is an F12 with an additional options cabinet.

5.1.1 Mechanical Mounting

1. Drill holes in accordance with the measurements given.
2. Provide screws suitable for the mounting surface. Retighten all 4 screws.

The frequency converter allows side-by-side installation. The back wall must always be solid.

Enclosure	Air space [mm]
D1h/D2h/D3h/D4h/D5h/D6h/D7h/D8h	225
E1/E2	225
F1/F2/F3/F4	225
F8/F9/F10/F11/F12/F13	225

Table 5.4 Required Free Air Space Above and Below Frequency Converter

NOTICE

If using a kit to direct the heatsink cooling air out the back of the frequency converter, the required top clearance is 100 mm .

5.1.2 Pedestal Installation of D-frames

The D7h and D8h frequency converters are shipped with a pedestal and a wall spacer. Before securing the enclosure to the wall, install the pedestal behind the mounting flange as shown in Illustration 5.1.

Illustration 5.1 Wall Mounting Spacer

To install a pedestal-mounted D-frame unit, perform the following steps as shown in Illustration 5.2:

1. Attach the pedestal to the back channel using 2 M10 nuts.
2. Fasten 2 M5 screws through the back pedestal flange into the pedestal drive mounting bracket.
3. Fasten 4 M 5 screws through the front pedestal flange into the front gland plate mounting holes.

5.1.3 Pedestal Installation of F-frames

The F-frame frequency converters are shipped with a pedestal. The F-frame pedestals use 8 bolts instead of 4, as shown in Illustration 5.3.

Illustration 5.3 Pedestal Bolt Installation

To install a pedestal-mounted F-frame unit, perform the following steps:

1. If using a kit to direct the airflow from the heat sink to the outside vent on the back of the frequency converter, verify there is a minimum of 100 mm ceiling clearance.
2. Install each $M 8 \times 60 \mathrm{~mm}$ bolt with lock washer and flat washer through the frame into the threaded hole in the base. Install 4 bolts per cabinet. Refer to Illustration 5.4
3. Install each $M 10 \times 30 \mathrm{~mm}$ bolt with captive lock washer and flat washer through the base plate and into the threaded hole in the base. Install 4 bolts per cabinet. Refer to Illustration 5.4

Illustration 5.4 Fastener Location Detail

5.1.4 Safety Requirements of Mechanical Installation

ACAUTION

To avoid serious injury or equipment damage, observe the information in the field mounting and integration kits, especially when installing large units.

ACAUTION

The frequency converter is cooled with air circulation. To protect the unit from overheating, ensure that the ambient temperature does not exceed the maximum rated temperature. If the ambient temperature is in the range of $45-55^{\circ} \mathrm{C}$, derating of the frequency converter is relevant. See chapter 8.5.5 Derating for Ambient Temperature.
Failure to consider derating for ambient temperature can reduce the service life of the frequency converter.

5.2 Pre-installation

5.2.1 Planning the Installation Site

NOTICE

To avoid extra work during and after installation, it is important to plan the installation of the frequency converter in advance.

Select the best possible operation site by considering the following:

- Ambient operating temperature
- Installation method
- How to cool the unit
- Position of the frequency converter
- Cable routing
- Ensure the power source supplies the correct voltage and necessary current
- Ensure that the motor current rating is within the maximum current from the frequency converter
- If the frequency converter is without built-in fuses, ensure that the external fuses are rated correctly.

5.2.2 Receiving the Frequency Converter

When receiving the frequency converter, make sure that the packaging is intact, and be aware of any potential damage to the unit during transport. If damage has occurred, contact the shipping company immediately to claim the damage.

Also, look at the nameplate as shown in Illustration 5.5 and verify the order matches the information found on the nameplate.

VLT ${ }^{\text {® }}$Automation Drive www.danfoss.com
T/C: FC-302N200T5554H2XGC7XXSXXXXAOBXCXXXXDX
P/N: 134F9807 S/N: 123456H123
$200 \mathrm{~kW} / 300 \mathrm{HP}$, High Overload
IN: 3x380-500V 50/60Hz 381/348A
OUT: 3x0-Vin 0-590Hz 395/361A

Illustration 5.5 Nameplate Label

5.2.3 Transportation and Unpacking

Before unpacking the frequency converter, position it as close as possible to the final installation site. Remove the box and leave the frequency converter on the pallet as long as possible.

5.2.4 Lifting

Lift the frequency converter using the dedicated lifting eyes. For all E2 (IP00) enclosures, use a bar to avoid bending the lifting holes of the frequency converter.

The following illustrations demonstrate the recommended lifting methods for the different frame sizes. In addition to Illustration 5.8, Illustration 5.9, and Illustration 5.10, a spreader bar is an acceptable way to lift the F-frame.

AWARNING

The lifting bar must be able to handle the weight of the frequency converter. See Table 5.2 for the weight of each frame size. Maximum diameter for the bar is 2.5 cm (1 inch). The angle from the top of the drive to the lifting cable should be 60° or greater.

Illustration 5.7 Recommended Lifting Method, E-frame Size

01'889980\&1
176FA245.10

Illustration 5.9 Recommended Lifting Method, Frame Sizes F3, F4, F11, F12 and F13

Illustration 5.10 Recommended Lifting Method, Frame Size F8

Illustration 5.8 Recommended Lifting Method, Frame Sizes F1, F2, F9 and F10

NOTICE

The pedestal is packaged separately and included in the shipment. Mount the frequency converter on the pedestal in its final location. The pedestal allows proper airflow and cooling to the frequency converter. See chapter 5.1.3 Pedestal Installation of F-frames.

5.2.5 Tools Needed

To perform the mechanical installation, the following tools are needed:

- Drill with 10 mm or 12 mm drill bits.
- Tape measurer.
- Wrench with relevant metric sockets (7-17 mm).
- Wrench extensions.
- \quad Sheet metal punch for conduits or cable glands in IP21 (NEMA 1) and IP54 (NEMA 12) units.
- Lifting bar to lift the unit (rod or tube max. $\varnothing 25$ mm (1 inch), able to lift minimum 400 kg (880 lbs)).
- Crane or other lifting aid to place the frequency converter in position.
- Use a Torx T50 tool to install the E1 in IP21 and IP54 enclosure types.

5.2.6 General Considerations

Wire Access

Ensure that proper cable access is present including necessary bending allowance. As the IP00 enclosure is open to the bottom, cables must be fixed to the back panel of the enclosure where the frequency converter is mounted.

NOTICE

All cable lugs/shoes must mount within the width of the terminal bus bar.

Space

Ensure proper space above and below the frequency converter to allow airflow and cable access. In addition, space in front of the unit must be considered to enable opening of the door of the panel.

Illustration 5.11 Front Clearance of IP21/IP54 Enclosure Type, Frame Size D1h, D5h, and D6h

Illustration 5.12 Front Clearance of IP21/IP54 Enclosure Type, Frame Size D2h, D7h, and D8h

Illustration 5.13 Front Clearance of IP21/IP54 Enclosure Type, Frame Size E1.

Illustration 5.14 Front Clearance of IP21/IP54 Enclosure Type, Frame Size F1

Illustration 5.15 Front Clearance of IP21/IP54 Enclosure Type, Frame Size F3

Illustration 5.16 Front Clearance of IP21/IP54 Enclosure Type, Frame Size F2

Illustration 5.17 Front Clearance of IP21/IP54 Enclosure Type, Frame Size F4

Illustration 5.18 Front Clearance of IP21/IP54 Enclosure Type, Frame Size F8

Illustration 5.19 Front Clearance of IP21/IP54 Enclosure Type, Frame Size F9

Illustration 5.20 Front Clearance of IP21/IP54 Enclosure Type, Frame Size F10

Illustration 5.21 Front Clearance of IP21/IP54 Enclosure Type, Frame Size F11

Illustration 5.22 Front Clearance of IP21/IP54 Enclosure Type, Frame Size F12

Illustration 5.23 Front Clearance of IP21/IP54 Enclosure Type, Frame Size F13

5.2.7 Cooling and Airflow

Cooling

Cooling can be achieved through one of the following methods:

- cooling ducts in the bottom and the top of the unit
- back-channel cooling
- combination of the cooling ducts and the back-channel cooling

Duct Cooling

A dedicated option has been developed to optimise installation of IP00/chassis frequency converters in Rittal TS8 enclosures utilizing the fan of the frequency converter for forced air cooling of the back channel. The air out the top of the enclosure could be ducted outside a facility so the heat losses from the back channel are not dissipated within the control room, reducing air conditioning requirements of the facility.

Back Cooling

The back channel air can also be ventilated in and out the back of a Rittal TS8 enclosure. Using this method, the back channel could take air from outside the facility and then return the heat losses outside the facility, thus reducing air conditioning requirements.

NOTICE

A door fan is required on the enclosure to remove the heat losses not contained in the back channel of the frequency converter and any additional losses generated from other components installed inside the enclosure. The total required air flow must be calculated so that the appropriate fans can be selected. Some enclosure manufacturers offer software for performing the calculations.

Airflow

The necessary airflow over the heat sink must be secured. The flow rate is shown in Table 5.5.

Drive type	Drive size		Frame size	Enclosure protection	Airflow m3/h (cfm)	
	380-480 V (T5)	525-690 V (T7)			Door fan(s)/Top fan	Heatsink fan(s)
6-Pulse	N110 to N160	N75 to N160	D1h, D5h, D6h	IP21/NEMA 1 or IP54/NEMA 12	102 (60)	420 (250)
			D3h	IP20/chassis		
	N200 to N315	N200 to N400	D2h, D7h, D8h	IP21/NEMA 1 or IP54/NEMA 12	204 (120)	840 (500)
			D4h	IP20/chassis		
	-	P450 to P500	E1	IP21/NEMA 1 or IP54/NEMA 12	340 (200)	1105 (650)
			E2	IP00/chassis	255 (150)	
	P355 to P450	P560 to P630	E1	IP21/NEMA 1 or IP54/NEMA 12	340 (200)	1445 (850)
			E2	IP00/chassis	255 (150)	
	P500 to P1M0	P710 to P1M4	F1/F3, F2/F4	IP21/NEMA 1	700 (412)	985 (580)
				IP54/NEMA 12	525 (309)	
12-Pulse	P315 to P1M0	P450 to P1M4	$\begin{gathered} \text { F8/F9, F10/F11, } \\ \text { F12/F13 } \end{gathered}$	IP21/NEMA 1	700 (412)	985 (580)
				IP54/NEMA 12	525 (309)	

[^2]* Airflow per fan. F-frames contain multiple fans.

How to Install

D-frame Cooling Fans

All frequency converters in this size range are equipped with cooling fans to provide airflow along the heatsink. Units in IP21 (NEMA 1) and IP54 (NEMA 12) enclosures have a fan mounted in the enclosure door to provide more airflow to the unit. IP20 enclosures have a fan mounted to the top of the unit for more cooling. There is a small 24 V DC mixing fan mounted under the input plate. This fan operates anytime the frequency converter is powered on.
DC voltage from the power card powers the fans. The mixing fan is powered by 24 V DC from the main switch mode power supply. The heatsink fan and the door/top fan are powered by 48 V DC from a dedicated switch mode power supply on the power card. Each fan has tachometer feedback to the control card to confirm that the fan is operating correctly. On/off and speed control of the fans is provided to reduce overall acoustical noise and extend the life of the fans.

The following conditions activate fans on the D-frame:

- Output current greater than 60% of nominal
- IGBT over temperature
- IGBT low temperature
- Control card over temperature
- DC hold active
- DC brake active
- Dynamic brake circuit active
- During pre-magnetization of the motor
- AMA in progress

In addition to these conditions, the fans are always started shortly after mains input power is applied to the frequency converter. Once fans are started, they run for a minimum of one minute.

The following conditions activate fans on the E - and F frames:

1. AMA

2. DC Hold
3. Pre-Mag
4. DC Brake
5. 60% of nominal current is exceeded
6. Specific heatsink temperature exceeded (power size dependent)
7. Specific power card ambient temperature exceeded (power-size dependent)
8. Specific control card ambient temperature exceeded

External Ducts

If more duct work is added externally to the Rittal cabinet the pressure drop in the ducting must be calculated. Use the derating charts to derate the frequency converter according to the pressure drop.

Illustration 5.24 D-frame Derating vs. Pressure Change.
Frequency Converter Airflow: 450 cfm ($765 \mathrm{~m}^{3} / \mathrm{h}$)

Illustration 5.25 E-frame Derating vs. Pressure Change (Small Fan), P250T5 and P355T7-P400T7. Frequency Converter
Airflow: 650 cfm ($1,105 \mathrm{~m}^{3} / \mathrm{h}$)

Illustration 5.26 E-frame Derating vs. Pressure Change (Large
Fan), P315T5-P400T5 and P500T7-P560T7. Frequency
Converter Airflow: 850 cfm ($1,445 \mathrm{~m}^{3} / \mathrm{h}$)

Illustration 5.27 F1, F2, F3, F4 Frame Derating vs. Pressure Change. Frequency Converter Airflow: 580 cfm (985 m $3 / \mathrm{h}$)

5.2.8 Gland/Conduit Entry - IP21 (NEMA 1) and IP54 (NEMA12)

Cables are connected through the gland plate from the bottom. Remove the plate and plan where to place the entry for the glands or conduits. The following illustrations show the cable entry points viewed from the bottom of various frequency converters.

NOTICE

Fit the gland plate to the frequency converter to ensure the specified protection degree.

1	Mains side
2	Motor side

[^3]

Illustration 5.29 D2h, Bottom View

Illustration 5.30 D5h \& D6h, Bottom View

1	Mains side
2	Motor side

Illustration 5.31 D7h \& D8h, Bottom View

[^4]

1 Cable conduit entry

Illustration 5.33 F1, Bottom View

Illustration 5.34 F2, Bottom View

1	Cable conduit entry

Illustration 5.35 F3, Bottom View

Cable conduit entry

Illustration 5.36 F4, Bottom View

5.2.9 Gland/Conduit Entry, 12-Pulse - IP21 (NEMA 1) and IP54 (NEMA12)

The following illustrations show the cable entry points as viewed from the bottom of the frequency converter.

Illustration 5.37 Frame Size F8

1	Place conduits in shaded areas

Illustration 5.38 Frame Size F9

\section*{| 1 | Place conduits in shaded areas |
| :--- | :--- |}

Illustration 5.39 Frame Size F10

1	Place conduits in shaded areas

Illustration 5.40 Frame Size F11

Illustration 5.42 Frame Size F13

5.3 Electrical Installation

5.3.1 Cables General

NOTICE

Always comply with national and local regulations on cable cross-sections.

For more information on the correct torques, see Table 5.9.

5.3.2 Preparing Gland Plates for Cables

1. Remove the gland plate from the frequency converter.
2. Provide support for the gland plate around the hole being punched or drilled.
3. Remove debris from the hole.
4. Mount the cable entry on the frequency converter.

5.3.3 Connection to Mains and Earthing

NOTICE

The plug connector for power can be removed.

1. Make sure that the frequency converter is properly earthed. Connect to earth connection (terminal 95). Use screw from the accessory bag.
2. Place plug connector $91,92,93$ from the accessory bag onto the terminals labelled MAINS at the bottom of the frequency converter.
3. Connect mains wires to the mains plug connector.

ACAUTION

The earth connection cable cross section must be at least $10 \mathrm{~mm}^{2}$ or 2 rated mains wires terminated separately according to EN 50178.

The mains connection is fitted to the main switch if included.

NOTICE

Check that mains voltage corresponds to the mains voltage of the frequency converter name plate.

How to Install

ACAUTION

IT Mains

Do not connect 400 V frequency converters with RFI－ filters to mains supplies with a voltage between phase and earth of more than 440 V ．
For IT mains and delta earth（grounded leg），mains voltage can exceed 440 V between phase and earth．

Illustration 5．43 Terminals for Mains and Earthing

5．3．4 Motor Cable Connection

NOTICE

Screened motor cable is recommended．If an unscreened cable is used，some EMC requirements are not complied with．For more information，see chapter 5．9 EMC－correct Installation．

1．Fasten de－coupling plate to the bottom of the frequency converter with screws and washers from the accessory bag．

2．Attach motor cable to terminals $96(\mathrm{U}), 97(\mathrm{~V}), 98$ （W）．

3．Connect to earth connection（terminal 99）on de－ coupling plate with screws from the accessory bag．

4．Insert terminals $96(\mathrm{U}), 97(\mathrm{~V}), 98(\mathrm{~W})$ and motor cable to terminals labelled MOTOR．
5．Fasten screened cable to de－coupling plate with screws and washers from the accessory bag．

All types of three－phase asynchronous standard motors can be connected to the frequency converter．Normally，small motors are star－connected（230／400 V，D／Y）．Large motors are delta－connected（ $400 / 690 \mathrm{~V}, \mathrm{D} / \mathrm{Y}$ ）．Refer to the motor name plate for correct connection mode and voltage．

Illustration 5．44 Motor Cable Connection

NOTICE

If motors are not inverter－duty rated，fit a Sine－wave filter on the output of the frequency converter．

Term． no．	96	97	98	99	
	U	V	W	PE ${ }^{1)}$	Motor voltage 0－100\％of mains voltage． 3 wires out of motor
	U1	V1	W1	PE ${ }^{1)}$	Delta－connected
	W2	U2	V2		6 wires out of motor
	U1	V1	W1	PE ${ }^{1)}$	Star－connected U2，V2，W2 U2，V2，and W2 to be interconnected separately．

Table 5．6 Motor Cable Connection
1）Protected Earth Connection

5．3．5 Motor Cables

See chapter 8．1 General Specifications for maximum dimensioning of motor cable cross－section and length．
－To comply with EMC emission specifications，use a screened／armoured motor cable．
－Keep the motor cable as short as possible to reduce the noise level and leakage currents．
－Connect the motor cable screen to both the de－ coupling plate of the frequency converter and to the metal cabinet of the motor．
－Make the screen connections with the largest possible surface area（cable clamp），by using the supplied installation devices in the frequency converter．
－Avoid mounting with twisted screen ends （pigtails），which spoils high frequency screening effects．
－If it is necessary to split the screen to install a motor isolator or motor relay，the screen must be
continued with the lowest possible HF impedance.

F-frame requirements

F1/F3 requirements:
Motor phase cable quantities must be multiples of 2 , resulting in $2,4,6$, or 8 (one cable is not allowed) to obtain equal numbers of wires attached to both inverter module terminals. The cables are required to be equal length within 10% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

F2/F4 requirements:

Motor phase cable quantities must be multiples of 3, resulting in $3,6,9$, or 12 (1 or 2 cables are not allowed) to obtain equal numbers of wires attached to each inverter module terminal. The wires are required to be equal length within 10\% between the inverter module terminals and the first common point of a phase. The recommended common point is the motor terminals.

Output junction box requirements:

The length, minimum 2.5 meters, and quantity of cables must be equal from each inverter module to the common terminal in the junction box.

NOTICE

If a retrofit application requires unequal numbers of wires per phase, consult the factory for requirements and documentation or use the top/bottom entry side cabinet busbar option.

5.3.6 Electrical Installation of Motor Cables

Screening of cables

Avoid installation with twisted screen ends (pigtails). They spoil the screening effect at higher frequencies. If it is necessary to break the screen to install a motor isolator or motor contactor, the screen must be continued at the lowest possible HF impedance.

Cable length and cross-section

The frequency converter has been tested with a given length of cable and a given cross-section of that cable. If the cross-section is increased, the cable capacitance - and thus the leakage current - increase, and the cable length must be reduced correspondingly.

Switching frequency

When frequency converters are used together with Sinewave filters to reduce the acoustic noise from a motor, the switching frequency must be set according to the Sinewave filter instruction in 14-01 Switching Frequency.

Aluminum conductors

Aluminum conductors are not recommended. Terminals can accept aluminum conductors but the conductor surface has to be clean, free of oxidation and sealed with neutral acid free Vaseline grease before the conductor is connected.

Furthermore, the terminal screw must be retightened after two days due to the softness of the aluminum. It is crucial to keep the connection a gas tight joint, otherwise the aluminum surface oxidizes again.

How to Install

5.3.7 Fuses

NOTICE

All fuses mentioned are maximum fuse sizes.

Branch circuit protection

To protect the installation against electrical and fire hazard, all branch circuits in an installation, switch gear or machine, must be short-circuit and overcurrent protected according to the national/international regulations.

Short circuit protection

The frequency converter must be protected against short-circuit to avoid electrical or fire hazard. Danfoss recommends using the fuses mentioned in Table 5.7 and Table 5.8 to protect service personnel or other equipment in case of an internal failure. The frequency converter provides full short circuit protection in a short-circuit on the motor output.

Over-current protection

To avoid fire hazard due to overheating of the cables, provide over-current protection in accordance with national regulations. The frequency converter is equipped with an internal over current protection that can be used for upstream overload protection (UL-applications excluded). See 4-18 Current Limit. Fuses must be designed for protection in a circuit capable of supplying a maximum of $100,000 \mathrm{~A}_{\mathrm{rms}}$ (symmetrical), $500 \mathrm{~V} / 600 \mathrm{~V}$ maximum.

5.3.8 Fuse Specifications

Enclosure size	Power [kW]	Recommended fuse size	Recommended Max. fuse
D	N110T4	aR-315	aR-315
	N132T4	aR-350	aR-350
	N165	aR-400	aR-400
	N200T4	aR-550	aR-550
	N250T4	aR-630	aR-630
	N315T4	aR-800	aR-700
E	P355-P450	aR-900	aR-900
F	P500-P560	aR-1600	aR-1600
	P630-P710	aR-2000	aR-2000
	P800-P1M0	aR-2500	aR-2500

Table 5.7 380-480 V, Fuse Recommendations, Frame Sizes D, E and F

Enclosure size	Power [kW]	Recommended fuse size	Recommended Max. fuse
D	N 75 K	aR-160	aR-160
	N90K-N160	aR-160	aR-160
	N200-N400	aR-550	aR-550
	P450-P500T7	aR-700	aR-700
	P560-P630T7	P710-P1MOT7	aR-1600
F	P1M2T7	aR-2000	aR-900 (500-560)
	P1M4T7	aR-2500	aR-1600
			$a R-2000$

[^5]
5.3.9 Access to Control Terminals

All terminals to the control cables are located underneath the terminal cover on the front of the frequency converter. Remove the terminal cover with a screw driver.

5.3.10 Control Terminals

Drawing Reference Numbers:

1. 10-pole plug digital I/O
2. 3-pole plug RS-485 Bus
3. 6-pole analog I / O
4. USB Connection

Illustration 5.45 Control Terminals (All Frame Sizes)

5.3.11 Control Cable Terminals

To mount the cable to the terminal:

1. Strip 9-10 mm of insulation from cable.
2. Insert a screw driver (Max. $0.4 \times 2.5 \mathrm{~mm}$) in the rectangular hole.
3. Insert the cable in the adjacent circular hole.
4. Remove the screw driver. The cable is now mounted to the terminal.

Control cable torque value is $0.5-0.6 \mathrm{Nm}$ ($5 \mathrm{in}-\mathrm{lbs}$.)

To remove the cable from the terminal:

1. Insert a screw driver ${ }^{11}$ in the square hole.
2. Pull out the cable.

Wiring to Control Terminals

Illustration 5.46 Removing Insulation from Cable

Illustration 5.47 Inserting Cable into Terminal

Illustration 5.48 Removing Cable from Terminal

Illustration 5.49 Control Cable Terminals

5.3.12 Basic Wiring Example

1. Mount terminals from the accessory bag to the front of the frequency converter.
2. Connect terminals 18 and 27 to +24 V (terminal 12/13)

Default settings:
18 = Start
27 = stop inverse

Illustration 5.50 Terminal 37 available with Safe Stop Function only!

5.3.13 Control Cable Length

Digital in/digital out

Dependent on what electronics are being used, it is possible to calculate the maximum cable impedance based on the $4 \mathrm{k} \Omega$ frequency converter input impedance.

Analog in/analog out

Again the electronics used puts a limitation on the cable length.

5.3.14 Electrical Installation, Control Cables

[^6]
*Safe Torque Off (STO) input available with STO function only

Very long control cables and analogue signals occasionally result in $50 / 60 \mathrm{~Hz}$ ground loops due to noise from mains supply cables. In this case, break the screen or insert a 100 nF capacitor between screen and chassis.

The digital and analogue inputs and outputs must be connected separately to the common inputs (terminal 20, 55,39) to avoid ground currents from both groups to affect other groups. For example, switching on the digital input disturbs the analogue input signal.

NOTICE

Control cables must be screened.

Use a clamp from the accessory bag to connect the screen to the frequency converter de-coupling plate for control cables.

Illustration 5.53 Screened Control Cable

5.3.15 12-Pulse Control Cables

Illustration 5.54 Control Cable Diagram

How to Install

Illustration 5.55 Electrical Terminals without Options

Terminal 37 is the input to be used for safe torque off. For instructions on safe torque off installation, refer to $V L T^{\circledR}$ Frequency Converters Safe Torque Off Operating Instructions..

1) $\mathrm{F} 8 / \mathrm{F9}=(1)$ set of terminals.
2) $\mathrm{F} 10 / \mathrm{F} 11=(2)$ sets of terminals.
3) $F 12 / F 13=(3)$ sets of terminals.

Input Polarity of Control Terminals

Illustration 5.56 Input Polarity of Control Terminals

Illustration 5.57 Input Polarity of Control Terminals

5.3.16 Switches S201, S202 and S801

Switches S201 (A53) and S202 (A54) are used to select a current $(0-20 \mathrm{~mA})$ or a voltage $(0-10 \mathrm{~V})$ configuration of the analog input terminals 53 and 54 respectively.

Switch S801 (BUS TER.) can be used to enable termination on the RS-485 port (terminals 68 and 69).

See Illustration 5.51 and Illustration 5.52.

Default setting:

$$
\begin{aligned}
& \text { S201 (A53) = OFF (voltage input) } \\
& \text { S202 (A54) = OFF (voltage input) } \\
& \text { S801 (Bus termination) }=\text { OFF }
\end{aligned}
$$

NOTICE

Change switch position at power off only.

Illustration 5.58 Switch Locations

5.4 Connections - Frame Sizes D, E and F

5.4.1 Torque Settings

When tightening electrical connections, it is important to use a torque wrench to obtain the correct torque. Torque that is too low or too high results in a bad electrical connection.
See the torque settings in Table 5.9.

Frame size	Terminal		Size	Torque nominal [Nm (in-lbs)]	Torque range [Nm (in-lbs)]
D1h/D3h/D5h/D6h	Mains Motor Load sharing Regeneration		M10	29.5 (261)	19-40 (168-354)
	Earth (ground) Brake		M8	14.5 (128)	8.5-20.5 (75-181)
D2h/D4h/D7h/D8h	Mains Motor Regeneration Load Sharing Earth (ground)		M10	29.5 (261)	19-40 (168-354)
	Brake		M8		8.5-20.5 (75-181)
E	Mains		M10	19.1 (169)	17.7-20.5 (156-182)
	Motor				
	Load Sharing				
	Earth				
	Regen		M8	9.5 (85)	8.8-10.3 (78.2-90.8 in-lbs.)
	Brake				
F	Mains		M10	19.1 (169)	17.7-20.5 (156-182 in-lbs.)
	Motor				
	Load Sharing				
	Regen:	DC-	M8	9.5 (85)	8.8-10.3 (78.2-90.8)
		DC+	M10	19.1 (169)	17.7-20.5 (156-182)
	F8-F13		M10	19.1 (169)	17.7-20.5 (156-182.)
	Earth		M8	9.5 (85)	8.8-10.3 (78.2-90.8)
	Brake				

Table 5.9 Terminal Tightening Torques

How to Install

5.4.2 Power Connections

NOTICE

All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. UL applications require $75^{\circ} \mathrm{C}$ copper conductors. Non-UL applications can use $75{ }^{\circ} \mathrm{C}$ and $90^{\circ} \mathrm{C}$ copper conductors.

The power cable connections are situated as shown in Illustration 5.59. Dimensioning of cable cross section must comply with the current ratings and local legislation. See chapter 8.1 General Specifications for correct dimensioning of motor cable cross-section and length.

For protection of the frequency converter, use the recommended fuses unless the unit has built-in fuses. Recommended fuses are listed in the Operating Instructions. Ensure that proper fusing complies with local regulations.

The mains connection is fitted to the mains switch if included.

Illustration 5.59 Power Cable Connections

NOTICE

The motor cable must be screened/armoured. If an unscreened/unarmoured cable is used, some EMC requirements are not complied with. Use a screened/ armoured motor cable to comply with EMC emission specifications. For more information, see Table 2.1.

Screening of cables

Avoid installation with twisted screen ends (pigtails). They spoil the screening effect at higher frequencies. If it is necessary to break the screen to install a motor isolator or contactor, continue the screen at the lowest possible HF impedance.

Connect the motor cable screen to both the de-coupling plate of the frequency converter and the metal housing of the motor.

Make the screen connections with the largest possible surface area (cable clamp) by using the installation devices within the frequency converter.

Cable-length and cross-section

The frequency converter has been EMC tested with a given length of cable. Keep the motor cable as short as possible to reduce the noise level and leakage currents.

Switching frequency

When frequency converters are used together with sinewave filters to reduce the acoustic noise from a motor, the switching frequency must be set according to the instructions in 14-01 Switching Frequency.

Table 5.10 Motor Cable Connection

1) Protected Earth Connection

NOTICE

In motors without phase insulation, paper or other insulation reinforcement suitable for operation with voltage supply, fit a sine-wave filter on the output of the frequency converter.

D-frame Interior Components

Illustration 5.61 D-frame Interior Components

1	LCP (Local Control Panel)	9	Relay 2 (04, 05, 06)
2	RS-485 serial bus connector	10	Lifting ring
3	Digital I/O and 24 V power supply	11	Mounting slot
4	Analog I/O connector	12	Cable clamp (PE)
5	USB connector	13	Ground
6	Serial bus terminal switch	14	Motor output terminals 96 (U), 97 (V), 98 (W)
7	Analog switches (A53), (A54)	15	Mains input terminals 91 (L1), 92 (L2), 93 (L3)
8	Relay $1(01,02,03)$		

Table 5.11 Legend to Illustration 5.61 and Illustration 5.62

How to Install

Terminal Locations - D1h/D2h

Take the following position of the terminals into consideration when designing the cable access.

Illustration 5.63 Position of Ground Terminals IP21 (NEMA Type 1) and IP54 (NEMA Type 12), D1h/D2h

Terminal Locations - D3h/D4h

Take the following position of the terminals into consideration when designing the cable access.

Illustration 5.64 Position of Ground Terminals IP20 (Chassis), D3h/D4h

[^7]Table 5.12 Legend to Illustration 5.63 and Illustration 5.64

Terminal Locations - D5h

Take the following position of the terminals into consideration when designing the cable access.

Illustration 5.65 Terminal Locations, D5h with Disconnect Option

1	Mains Terminals	3	Motor Terminals
2	Brake Terminals	4	Ground Terminals

Illustration 5.66 Terminal Locations, D5h with Brake Option

Terminal Locations - D6h

Take the following position of the terminals into consideration when designing the cable access.

1	Mains Terminals	4	Motor Terminals
2	TB6 Terminal block for contactor	5	Ground Terminals
3	Brake Terminals		

[^8]

1	Brake Terminals	4	Ground Terminals
2	TB6 Terminal block for contactor	5	Mains Terminals
3	Motor Terminals		

Illustration 5.68 Terminal Locations, D6h with Contactor and Disconnect Options
How to Install Design Guide

Illustration 5.69 Terminal Locations, D6h with Circuit Breaker Option

Terminal Locations - D7h

Take the following position of the terminals into consideration when designing the cable access.

1	Mains Terminals	3	Ground Terminals
2	Motor Terminals	4	Brake Terminals

[^9]

1	Mains Terminals	3	Motor Terminals
2	Brake Terminals	4	Ground Terminals

Illustration 5.71 Terminal Locations, D7h with Brake Option

Terminal Locations - D8h

Take the following position of the terminals into consideration when designing the cable access.

1	TB6 Terminal block for contactor	4	Brake Terminals
2	Motor Terminals	5	Mains Terminals
3	Ground Terminals		

Illustration 5.72 Terminal Locations, D8h with Contactor Option

1	TB6 Terminal block for contactor	4	Motor Terminals
2	Mains Terminals	5	Ground Terminals
3	Brake Terminals		

[^10]

1	Mains Terminals	3	Motor Terminals
2	Brake Terminals	4	Ground Terminals

Illustration 5.74 Terminal Locations, D8h with Circuit Breaker Option

Terminal Locations - E1

Take the following position of the terminals into consideration when designing the cable access.

Illustration 5.75 IP21 (NEMA Type 1) and IP54 (NEMA Type 12) Enclosure Power Connection Positions

How to Install
Design Guide

Illustration 5.76 IP21 (NEMA Type 1) and IP54 (NEMA Type 12) Enclosure Power Connection Positions (Detail B)

Frame size	Unit type	Dimension for disconnect terminal					
E1	IP54/IP21 UL and NEMA1/NEMA12						
	$\begin{gathered} 250 / 315 \mathrm{~kW}(400 \mathrm{~V}) \text { and } \\ 355 / 450-500 / 630 \mathrm{KW}(690 \mathrm{~V}) \end{gathered}$	381 (15.0)	253 (9.9)	253 (9.9)	431 (17.0)	562 (22.1)	N/A
	315/355-400/450 kW (400 V)	371 (14.6)	371 (14.6)	341 (13.4)	431 (17.0)	431 (17.0)	455 (17.9)

Illustration 5.77 IP21 (NEMA Type 1) and IP54 (NEMA Type 12) Enclosure Power Connection Position of Disconnect Switch

Terminal Locations - Frame Size E2

[^11]

Illustration 5.80 IP00 Enclosure Power Connections, Position of Disconnect Switch

NOTICE

The power cables are heavy and difficult to bend. Consider the optimum position of the frequency converter to ensure easy cable installation. Each terminal allows use of up to 4 cables with cable lugs or use of standard box lugs. Ground is connected to a relevant termination point in the frequency converter.

Illustration 5.81 Terminal in Detail

NOTICE

Power connections can be made to positions A or B.

Frame size	Unit type	Dimension for disconnect terminal					
E2		A	B	C	D	E	F
	$\begin{gathered} \hline 250 / 315 \mathrm{~kW}(400 \mathrm{~V}) \text { and } \\ 355 / 450-500 / 630 \mathrm{KW}(690 \mathrm{~V}) \end{gathered}$	381 (15.0)	245 (9.6)	334 (13.1)	423 (16.7)	256 (10.1)	N/A
	315/355-400/450 kW (400 V)	383 (15.1)	244 (9.6)	334 (13.1)	424 (16.7)	109 (4.3)	149 (5.8)

Table 5.13 Power Connections, E2

NOTICE

The F-Frames have 4 different sizes - F1, F2, F3 and F4. The F1 and F2 consist of an inverter cabinet on the right and rectifier cabinet on the left. The F3 and F4 are F1 and F2 units, respectively, with an additional options cabinet to the left of the rectifier.

Terminal Locations - Frame Sizes F1 and F3
Take the following position of the terminals into consideration when designing the cable access.

Illustration 5.82 Terminal Locations - Inverter Cabinet - F1 and F3. Gland Plate is 42 mm below .0 Level.

Illustration 5.83 Regeneration Terminal Locations - F1 and F3

Terminal Locations - Frame Size F2 and F4

Take the following position of the terminals into consideration when designing the cable access.

1	Front Side	3	Right Side
2	Left Side	4	Ground bar

Illustration 5.84 Terminal Locations - Inverter Cabinet - F2 and F4. Gland Plate is 42 mm below $\mathbf{.} 0$ Level.

Illustration 5.85 Regeneration Terminal Locations - F2 and F4

Terminal Locations - Rectifier (F1, F2, F3 and F4)

Take the following position of the terminals into consideration when designing the cable access.

1	Left Side	4	Loadshare Terminal $(-)$
2	Front Side	5	Ground bar
3	Right Side	6	Loadshare Terminal $(+)$

Illustration 5.86 Terminal Locations - Rectifier. Gland Plate is 42 mm below .0 Level.

Terminal Locations - Options Cabinet (F3 and F4)

Take the following position of the terminals into consideration when designing the cable access.

1	Left Side	3	Right Side
2	Front Side	4	Ground bar

Illustration 5.87 Terminal Locations - Options Cabinet. Gland Plate is 42 mm below .0 Level.

Terminal Locations - Options Cabinet with Circuit Breaker/Molded Case Switch (F3 and F4)

Take the following position of the terminals into consideration when designing the cable access.

130BA852.11

1	Left Side	3	Right Side
2	Front Side	4	Ground bar

Illustration 5.88 Terminal Locations - Options Cabinet with Circuit Breaker/Molded Case Switch. Gland Plate is 42 mm below .0 Level.

Power size	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$450 \mathrm{~kW}(480 \mathrm{~V}), 630-710 \mathrm{~kW}(690 \mathrm{~V})$	34.9	86.9	122.2	174.2
$500-800 \mathrm{~kW}(480 \mathrm{~V}), 800-1000 \mathrm{~kW}(690 \mathrm{~V})$	46.3	98.3	119.0	171.0

Table 5.14 Dimension for Terminal

5.4.3 Power Connections 12-Pulse Frequency Converters

NOTICE

All cabling must comply with national and local regulations on cable cross-sections and ambient temperature. UL applications require $75^{\circ} \mathrm{C}$ copper conductors. Non-UL applications can use 75 and $90^{\circ} \mathrm{C}$ copper conductors.

The power cable connections are situated as shown in Illustration 5.89. Dimensioning of cable cross section must be done in accordance with the current ratings and local legislation. See for correct dimensioning of motor cable cross-section and length.

For protection of the frequency converter, use the recommended fuses unless the unit is fitted with built-in fuses. Recommended fuses can be seen in chapter 5.3.7 Fuses. Always ensure that fusing complies with local regulations.

The mains connection is fitted to the mains switch if included.

Illustration 5.89 Mains Connection

NOTICE

For more information, see chapter 5.9 EMC-correct Installation.

A	6-Pulse Connection
1), 2), 3)	
B	Modified 6-Pulse Connection

Illustration 5.90 Mains Connection Options for 12-Pulse Frequency Converters

Notes:

1) Parallel connection shown. A single 3-phase cable may be used with sufficient carrying capability. Install shorting bus bars.
2) 6-pulse connection eliminates the harmonics reduction benefits of the 12-pulse rectifier.
3) Suitable for IT and TN mains connection.
4) If one of the 6-pulse modular rectifiers becomes inoperable, it is possible to operate the frequency converter at reduced load with a single 6-pulse rectifier. Contact Danfoss for reconnection details.
5) No paralleling of mains cabling is shown here. A 12-pulse frequency converter used as a 6-pulse should have mains cables of equal numbers and lengths.

How to Install

NOTICE

Use mains cables of equal length ($\mathbf{\pm 1 0 \%}$) and the same wire size for all 3 phases on both rectifier sections.

Screening of cables

Avoid installation with twisted screen ends (pigtails). They spoil the screening effect at higher frequencies. If it is necessary to break the screen to install a motor isolator or motor contactor, the screen must be continued at the lowest possible HF impedance.

Connect the motor cable screen to both the de-coupling plate of the frequency converter and the metal housing of the motor.

Make the screen connections with the largest possible surface area (cable clamp) using the supplied installation devices within the frequency converter.

Cable-Length and Cross-Section

Keep the motor cable as short as possible to reduce the noise level and leakage currents.

Switching Frequency

When frequency converters are used together with sinewave filters to reduce the acoustic noise from a motor, set the switching frequency according to the instruction in 14-01 Switching Frequency.

Term. no.	96	97	98	99	
	U	V	W	$\mathrm{PE}^{1)}$	Motor voltage 0-100\% of mains voltage. 3 wires out of motor
	U 1	V 1	W 1	$\mathrm{PE}^{1)}$	Delta-connected
	W 2	U 2	V 2		6 wires out of motor

Table 5.15 Terminals

1) Protective Earth Connection

NOTICE

In motors without phase insulation paper or other insulation reinforcement suitable for operation with voltage supply, fit a sine-wave filter on the output of the frequency converter.

5.4.4 Shielding against Electrical Noise

F-frame Size Units Only

Before mounting the mains power cable, mount the EMC metal cover to ensure best EMC performance.

NOTICE

The EMC metal cover is only included in units with an RFI filter.

Illustration 5.91 Mounting of EMC Shield

5.4.5 External Fan Power Supply

Frame Sizes E and F

In case the frequency converter is supplied by DC or if the fan must run independently of the mains supply, an external power supply can be connected via the power card.

The connector located on the power card provides the connection of line voltage for the cooling fans. The fans are connected at the factory to connect to a common AC line. Use jumpers between terminals 100-102 and 101-103. If external supply is needed, the jumpers are removed and the supply is connected to terminals 100 and 101 . Use a 5 A fuse for protection. In UL applications, use a LittelFuse KLK-5 or equivalent.

Terminal no.	Function
100,101	Auxiliary supply S, T
102,103	Internal supply S, T

Table 5.16 External Power Supply

5.5 Input Options

5.5.1 Mains Disconnects

Frame size	Power	Type
380-500 V		
D5h/D6h	N110-N160	ABB OT400U03
D7h/D8h	N200-N400	ABB OT600U03
E1/E2	P250	ABB OETL-NF600A
E1/E2	P315-P400	ABB OETL-NF800A
F3	P450	Merlin Gerin NPJF36000S12AAYP
F3	P500-P630	Merlin Gerin NRKF36000S20AAYP
F4	P710-P800	Merlin Gerin NRKF36000S20AAYP
525-690 V	N75K-N160	
D5h/D6h	N200-N400	ABB OT400U03
D5h/D6h	P630-P710	ABB OT600U03
F3	P800	Merlin Gerin NPJF36000S12AAYP
F3	P900-P1M2	Merlin Gerin NRKF36000S20AAYP
F4		Merlin Gerin NRKF36000S20AAYP

Table 5.17 Mains Disconnects, D, E and F- frame Frequency Converters

Frame size	Power	Type
380-500 V	P250	ABB OETL-NF600A
F9	P315	ABB OETL-NF600A
F9	P355	ABB OETL-NF600A
F9	P400	ABB OETL-NF600A
F9	P450	ABB OETL-NF800A
F11	P500	ABB OETL-NF800A
F11	P560	ABB OETL-NF800A
F11	P630	ABB OT800U21
F11	P710	Merlin Gerin NPJF36000S12AAYP
F13	P800	Merlin Gerin NPJF36000S12AAYP
F13		P355
525-690 V	P400	ABB OT400U12-121
F9	P500	ABB OT400U12-121
F9	P560	ABB OT400U12-121
F9	P630	ABB OT400U12-121
F9	P710	ABB OETL-NF600A
F11	P800	ABB OETL-NF600A
F11	P900	ABB OT800U21
F11	P1M0	ABB OT800U21
F13	F13	Merlin Gerin NPJF36000S12AAYP
F13		Merin NPJF36000S12AAYP

Table 5.18 Mains Disconnects, 12-Pulse Frequency Converters

How to Install

Design Guide

5.5.2 Circuit Breakers

		Default breaker settings (Trip level - Amps)			
Frame Size	Voltage [V]	Drive Model	Circuit Breaker Type	I1 (Overload)	I3/Ith (Instantaneous)
D6h	$380-480$	N110 - N132	ABB T5L400TW	400	4000
D6h	$380-480$	N160	ABB T5LQ400TW	400	4000
D8h	$380-480$	N200	ABB T6L600TW	600	6000
D8h	$380-480$	N250	ABB T6LQ600TW	600	6000
D8h	$380-480$		ABB T6LQ800TW	800	8000
	$525-690$				
D6h	N75K - N160	ABB T5L400TW	400	4000	
D8h	$525-690$	N200 - N315	ABB T6L600TW	600	6000
D8h	$525-690$	N400	ABB T6LQ600TW	600	6000

Table 5.19 D-frame Circuit Breakers

Frame size	Power \& Voltage	Type	Default breaker settings	
			Trip level [A]	Time [s]
F3	P450 380-500 V \& P630-P710 $525-690 ~ V ~$	Merlin Gerin NPJF36120U31AABSCYP		
F3	P500-P630 380-500 V \& P800 $525-690 ~ V ~$	Merlin Gerin NRJF36200U31AABSCYP	1200	
F4	P710 380-500 V \& P900-P1M2 $525-690 ~ V ~$	Merlin Gerin NRJF36200U31AABSCYP	2000	
F4	P800 380-500 V	Merlin Gerin NRJF36250U31AABSCYP	2000	

Table 5.20 F-frame Circuit Breakers

5.5.3 Mains Contactors

Frame size	Power \& Voltage	Contactor
D6h	N90K-N132 380-500 V	GE CK95CE311N
	N110-N160 380-480 V	GE CK95BE311N
	N55-N132 525-690 V	GE CK95CE311N
	N75-N160 525-690 V	GE CK95BE311N
D8h	N160-N250 380-500 V	
	N200-N315 380-480 V	
	N160-N315 525-690 V	GE CK11CE311N
	N200-N400 525-690 V	

Table 5.21 D-frame Contactors

How to Install
Design Guide

Frame size	Power \& Voltage	Contactor
F3	P450-P500 380-500 V \& P630-P800 525-690 V	Eaton XTCE650N22A
F3	P560 380-500 V	Eaton XTCE820N22A
F3	P630 380-500 V	Eaton XTCEC14P22B
F4	P900 525-690 V	Eaton XTCE820N22A
F4	P710-P800 $380-500 \mathrm{~V} \mathrm{\&} \mathrm{P1M2} \mathrm{525-690} \mathrm{~V}$	Eaton XTCEC14P22B

Table 5.22 F-frame Contactors

NOTICE

Customer-supplied 230 V supply is required for mains contactors.

5.5.4 Relay Output D Frame

Relay 1

- Terminal 01: common
- Terminal 02: normally open 400 V AC
- Terminal 03: normally closed 240 V AC

Relay 2

- Terminal 04: common
- Terminal 05 : normally open 400 V AC
- Terminal 06: normally closed 240 V AC

Relay 1 and relay 2 are programmed in 5-40 Function Relay, 5-41 On Delay, Relay, and 5-42 Off Delay, Relay.

Use option module MCB 105 for additional relay outputs.

Illustration 5.92 D-Frame Additional Relay Outputs

5.5.5 Relay Output E \& F-Frame

Relay 1

- Terminal 01: common
- Terminal 02: normally open 240 V AC
- Terminal 03: normally closed 240 V AC

Relay 2

- Terminal 04: common
- Terminal 05: normally open 400 V AC
- Terminal 06: normally closed 240 V AC

Relay 1 and relay 2 are programmed in 5-40 Function Relay, 5-41 On Delay, Relay, and 5-42 Off Delay, Relay.

Use option module MCB 105 for additional relay outputs.

Illustration 5.93 E- and F-Frame Additional Relay Outputs

How to Install

5.6 Final Set-Up and Test

To test the set-up and ensure that the frequency converter is running, follow these steps.

Step 1. Locate the motor name plate.

NOTICE

The motor is either star- (Y) or delta- connected (Δ). This information is on the motor name plate data.

Step 2. Enter the motor name plate data in this parameter list.
To access this list, first press [Quick Menu], then select "Q2 Quick Setup"

1. 1-20 Motor Power [kW] or 1-21 Motor Power [HP]
2. 1-22 Motor Voltage
3. 1-23 Motor Frequency
4. 1-24 Motor Current
5. 1-25 Motor Nominal Speed

Step 3. Activate the Automatic Motor Adaptation (AMA).
Performing an AMA ensures optimum performance. The AMA measures the values from the motor model equivalent diagram.

1. Connect terminal 27 to terminal 12 or set 5-12 Terminal 27 Digital Input to [0] No function
2. Activate the AMA 1-29 Automatic Motor Adaptation (AMA).
3. Choose between complete or reduced AMA. If an LC filter is mounted, run only the reduced AMA, or remove the LC filter during the AMA procedure.
4. Press [OK]. The display shows "Press [Hand On] to start".
5. Press [Hand On]. A progress bar indicates whether the AMA is in progress.

Stop the AMA during operation

1. Press [Off] - the frequency converter enters into alarm mode and the display shows that the AMA was terminated.

Successful AMA

1. The display shows "Press [OK] to finish AMA".
2. Press $[O K]$ to exit the AMA state.

Unsuccessful AMA

1. The frequency converter enters into alarm mode. A description of the alarm can be found in
chapter 8 General Specifications and Troubleshooting.
2. "Report Value" in the [Alarm Log] shows that the last measuring sequence carried out by the AMA, before the frequency converter entered alarm mode. This number along with the description of the alarm helps with troubleshooting. If contacting Danfoss Service, make sure to mention number and alarm description.

NOTICE

AMA often fails because of incorrectly registered motor name plate data or too great a difference between the motor power size and the frequency converter power size.

Step 4. Set speed limit and ramp time.
Set up the desired limits for speed and ramp time.

1. 3-02 Minimum Reference
2. 3-03 Maximum Reference
3. 4-11 Motor Speed Low Limit [RPM] or 4-12 Motor Speed Low Limit [Hz]
4. 4-13 Motor Speed High Limit [RPM] or 4-14 Motor Speed High Limit [Hz]
5. 3-41 Ramp 1 Ramp Up Time
6. 3-42 Ramp 1 Ramp Down Time

5.7 Installation of Miscellaneous Connections

5.7.1 RS-485 Bus Connection

One or more frequency converters can be connected to a control (or master) using the RS-485 standardised interface. Terminal 68 is connected to the P signal ($T X+, R X+$), while terminal 69 is connected to the N signal (TX-, RX-).

If more than one frequency converter is connected to a master, use parallel connections.

Illustration 5.94 Parallel Connections

How to Install

To avoid potential equalising currents in the screen, earth the cable screen via terminal 61, which is connected to the frame via an RC-link.

For EMC correct installation, refer to chapter 5.9 EMCcorrect Installation.

Bus termination

Terminate the RS-485 bus using a resistor network at both ends. For this purpose, set switch 8801 on the control card for "ON".
For more information, see chapter 5.3.16 Switches S201, S202 and S801.

Communication protocol must be set to 8-30 Protocol.

5.7.2 How to Connect a PC to the Unit

To control or program the frequency converter from a PC, install the MCT 10 Set-up Software.
The PC is connected via a standard (host/device) USB cable, or via the RS-485 interface.

NOTICE

The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is connected to protection earth on the frequency converter. Use only isolated laptop as PC connection to the USB connector on the frequency converter.

Illustration 5.95 Connection of PC to Frequency Converter

5.7.3 PC Software Tools

All frequency converters are equipped with a serial communication port. A PC tool for communication between PC and frequency converter is available.

5.7.3.1 MCT 10

MCT 10 has been designed as an easy to use interactive tool for setting parameters in our frequency converters.
The MCT 10 Set-up Software is useful for:

- Planning a communication network off-line. MCT 10 contains a complete frequency converter database
- Commissioning frequency converters on line
- Saving settings for all frequency converters
- Replacing a frequency converter in a network
- Expanding an existing network
- Future developed frequency converters will be supported

MCT 10

Set-up Software support Profibus DP-V1 via a Master class 2 connection, which makes it possible to on line read/write parameters in a frequency converter via the Profibus network, eliminating the need for an extra communication network.

Save drive settings:

1. Connect a PC to the unit via USB com port
2. Open MCT 10 Set-up Software
3. Choose "Read from drive"
4. Choose "Save as"

All parameters are now stored in the PC.

Load drive settings:

1. Connect a PC to the unit via USB com port
2. Open MCT 10 Set-up software
3. Choose "Open"- to view stored files
4. Open the appropriate file
5. Choose "Write to drive"

All parameter settings are now transferred to the frequency converter.
A separate manual for MCT 10 Set-up Software is available.

The MCT 10 Set-up Software Modules

The following modules are included in the software package:

MCT 10 Setup Software

- Setting parameters
- Copy to and from frequency converters
- Documentation and print out of parameter settings incl. diagrams

Ext. User Interface

- Preventive Maintenance Schedule
- Clock settings
- Timed Action Programming

How to Install

- Smart Logic Controller Set-up
- Cascade Control Config. Tool

Ordering number:

Order the CD containing MCT 10 Set-up Software using code number 130B1000.

MCT 10 can also be downloaded from www.danfoss.com/ BusinessAreas/DrivesSolutions/Softwaredownload/.

5.7.3.2 MCT 31

MCT 31

The MCT 31 harmonic calculation PC tool enables easy estimation of the harmonic distortion in a given application. Both the harmonic distortion of Danfoss frequency converters as well as non-Danfoss frequency converters with additional harmonic reduction devices, such as Danfoss AHF filters and 12-18-pulse rectifiers, can be calculated.

Ordering number:

Order the CD containing the MCT 31 PC tool using code number 130B1031.

MCT 31 can also be downloaded from www.danfoss.com/ BusinessAreas/DrivesSolutions/Softwaredownload/.

5.8 Safety

5.8.1 High Voltage Test

Carry out a high voltage test by short-circuiting terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{L}_{1}, \mathrm{~L}_{2}$, and L_{3}. Energize maximum 2.15 kV DC for 380-500 V frequency converters and 2.525 kV DC for 525690 V frequency converters for one second between this short-circuit and the chassis.

AWARNING

When running high voltage tests of the entire installation, interrupt the mains and motor connection if the leakage currents are too high.

5.8.2 Safety Earth Connection

The frequency converter has a high leakage current and must be earthed appropriately for safety reasons according to EN 50178.

AWARNING

The earth leakage current from the frequency converter exceeds 3.5 mA . To ensure a good mechanical connection from the earth cable to the earth connection (terminal 95), the earth grounding must be reinforced in one of the following ways:

- earth ground wire of at least $10 \mathrm{~mm}^{2}$
- 2 separate earth ground wires both complying with the dimensioning rules

5.9 EMC-correct Installation

5.9.1 Electrical Installation - EMC Precautions

The following is a guideline to good engineering practice when installing frequency converters. Follow these guidelines in compliance with EN 61800-3 First environment. If the installation is in EN 61800-3 Second environment, industrial networks, or in an installation with its own transformer, deviation from these guidelines is allowed but not recommended. See also chapter 2.3.3 Danfoss Frequency Converter and CE Labelling, , , chapter 2.10.3 EMC Test Results (Emission) and .

Good Engineering Practice to Ensure EMC-Correct Electrical Installation:

- Use only braided screened/armoured motor cables and braided screened control cables. The screen provides a minimum coverage of 80%. The screen material must be metal, not limited to but typically copper, aluminum, steel, or lead. There are no special requirements for the mains cable.
- Installations using rigid metal conduits are not required to use screened cable, but the motor cable must be installed in conduit separate from the control and mains cables. Full connection of the conduit from the frequency converter to the motor is required. The EMC performance of flexible conduits varies a lot and information from the manufacturer must be obtained.
- Connect the screen conduit to earth at both ends for motor cables as well as for control cables. In some cases, it is not possible to connect the screen in both ends. If so, connect the screen at the frequency converter. See also chapter 5.3.3 Connection to Mains and Earthing.
- Avoid terminating the screen with twisted ends (pigtails). It increases the high frequency impedance of the screen, which reduces its effectiveness at high frequencies. Use low impedance cable clamps or EMC cable glands instead.
- Avoid using unscreened motor or control cables inside cabinets housing the frequency converter, whenever possible.

Leave the screen as close to the connectors as possible.

Illustration 5.96 shows an example of an EMC-correct electrical installation of an IP20 frequency converter. The
frequency converter is fitted in an installation cabinet with an output contactor and connected to a PLC, which is installed in a separate cabinet. Other ways of doing the installation could have just as good an EMC performance, provided the guidelines to engineering practice are followed.

If the installation is not carried out according to the guideline and if unscreened cables and control wires are used, some emission requirements are not complied with, although the immunity requirements are fulfilled. See chapter 2.10.3 EMC Test Results (Emission).

Illustration 5.96 EMC-Correct Electrical Installation of a Frequency Converter in Cabinet

How to Install

Illustration 5.97 Electrical Connection Diagram (6-Pulse Example Shown)

5.9.2 Use of EMC-Correct Cables

Danfoss recommends braided screened/armoured cables to optimise EMC immunity of the control cables and the EMC emission from the motor cables.

The cable's ability to reduce the incoming and outgoing radiation of electric noise depends on the transfer impedance $\left(Z_{T}\right)$. The cable's screen is normally designed to reduce the transfer of electric noise; however, a screen with a lower transfer impedance $\left(Z_{T}\right)$ value is the most effective.

Cable manufacturers rarely state transfer impedance $\left(Z_{T}\right)$, but it is often possible to estimate transfer impedance $\left(Z_{T}\right)$ by assessing the physical design of the cable. See Illustration 5.98.

Illustration 5.98 Transfer Impedance $\mathbf{Z}_{\mathbf{T}}$

5.9.3 Earthing of Screened/Armoured Control Cables

Generally speaking, control cables must be braided screened/armoured and the screen must be connected with a cable clampat both ends to the metal cabinet of the unit.

Illustration 5.99 indicates how correct earthing is carried out and what to do when in doubt.
a. Correct earthing

Control cables and cables for serial communication must be fitted with cable clamps at both ends to ensure the best possible electrical contact.
b. Wrong earthing

Do not use twisted cable ends (pigtails). They increase the screen impedance at high frequencies.
c. Protection regarding earth potential between PLC and frequency converter
If the earth potential between the frequency converter and the PLC is different, electric noise can occur that disturbs the entire system. Solve this problem by fitting an equalising cable next to the control cable. Minimum cable crosssection: $16 \mathrm{~mm}^{2}$.
d. For $50 / 60 \mathrm{~Hz}$ earth loops

If long control cables are used, $50 / 60 \mathrm{~Hz}$ earth loops are possible. Solve this problem by
connecting one end of the screen to earth via a 100 nF capacitor (keeping leads short).
e. Cables for serial communication

Eliminate low-frequency noise currents between two frequency converters by connecting one end of the screen to terminal 61. This terminal is connected to earth via an internal RC link. Use twisted-pair cables for reducing the differential mode interference between the conductors.

| PLC etc. |
| :--- | :--- | :--- |

Illustration 5.99 Earthing

5.10 Residual Current Device

Use RCD relays, multiple protective earthing, or earthing as extra protection to comply with local safety regulations. If an earth fault appears, a DC content could develop in the faulty current.
If RCD relays are used, local regulations must be observed. Relays must be suitable for protection of 3-phase equipment with a bridge rectifier and for a brief discharge on power-up see chapter 2.13 Earth Leakage Current for further information.

6 Application Examples

6.1 Typical Application Examples

6.1.1 Start/Stop

Terminal $18=$ start/stop 5-10 Terminal 18 Digital Input [8] Start
Terminal 27 = No operation 5-12 Terminal 27 Digital Input [0] No operation (Default coast inverse

5-10 Terminal 18 Digital Input $=$ Start $($ default $)$
5-12 Terminal 27 Digital Input $=$ coast inverse (default)

6.1.2 Pulse Start/Stop

Terminal $18=$ start/stop 5-10 Terminal 18 Digital Input [9] Latched start
Terminal 27= Stop 5-12 Terminal 27 Digital Input [6] Stop inverse

5-10 Terminal 18 Digital Input $=$ Latched start
5-12 Terminal 27 Digital Input $=$ Stop inverse

Illustration 6.2 Terminal 37: Available only with Safe Stop Function!

6.1.3 Potentiometer Reference

Voltage reference via a potentiometer.
3-15 Reference 1 Source [1] $=$ Analog Input 53
6-10 Terminal 53 Low Voltage $=0 \mathrm{~V}$
6-11 Terminal 53 High Voltage $=10 \mathrm{~V}$
6-14 Terminal 53 Low Ref./Feedb. Value $=0$ RPM
6-15 Terminal 53 High Ref./Feedb. Value $=1.500$
RPM

Switch S201 = OFF (U)

6.1.4 Automatic Motor Adaptation (AMA)

AMA is an algorithm to measure the electrical motor parameters on a motor at standstill, meaning that AMA itself does not supply any torque.
AMA is useful when commissioning systems and optimising the adjustment of the frequency converter to the applied motor. This feature is used where the default setting does not apply to the connected motor.
1-29 Automatic Motor Adaptation (AMA) allows a choice of complete AMA with determination of all electrical motor parameters or reduced AMA with determination of the stator resistance Rs only.
The duration of a total AMA varies from a few minutes on small motors to more than 15 minutes on large motors.

Limitations and preconditions:

- For the AMA to determine the motor parameters optimally, enter the correct motor nameplate data in 1-20 Motor Power [kW] to 1-28 Motor Rotation Check.
- For the best adjustment of the frequency converter, carry out AMA on a cold motor. Repeated AMA runs could lead to a heating of the motor, which results in an increase of the
stator resistance, Rs. Normally, this increase is not critical.
- AMA can only be carried out if the rated motor current is minimum 35% of the rated output current of the frequency converter. AMA can be carried out on up to one oversize motor.
- It is possible to carry out a reduced AMA test with a Sine-wave filter installed. Avoid carrying out a complete AMA with a Sine-wave filter. If an overall setting is required, remove the Sine-wave filter while running a total AMA. After completion of the AMA, reinsert the Sine-wave filter.
- If motors are coupled in parallel, use only reduced AMA if any.
- Avoid running a complete AMA when using synchronous motors. If synchronous motors are applied, run a reduced AMA and manually set the extended motor data. The AMA function does not apply to permanent magnet motors.
- The frequency converter does not produce motor torque during an AMA. During an AMA, it is imperative that the application does not force the motor shaft to run, which is known to happen with wind milling in ventilation systems, for example. This disturbs the AMA function.
- AMA cannot be activated when running a PM motor (when 1-10 Motor Construction is set to [1] PM non-salient SPM).

The Smart Logic Control (SLC) is essentially a sequence of user-defined actions (see 13-52 SL Controller Action) executed by the SLC when the associated user-defined event (see 13-51 SL Controller Event) is evaluated as TRUE by the SLC.
Events and actions are each numbered and are linked in pairs called states, which means that when event [1] is fulfilled (attains the value TRUE), action [1] is executed. After this sequence, the conditions of event [2] will be evaluated and if evaluated TRUE, action [2]will be executed, and so on. Events and actions are placed in array parameters.

Only one event is evaluated at any time. If an event is evaluated as FALSE, nothing happens (in the SLC) during the present scan interval and no other events are evaluated, so that when the SLC starts, it evaluates event [1] (and only event [1]) each scan interval. Only when event [1] is evaluated TRUE, the SLC executes action [1] and starts evaluating event [2].

It is possible to program from 0 to 20 events and actions. When the last event/action has been executed, the sequence starts over again from event [1]/action [1]. The illustration shows an example with three events/actions:

Application Examples

In applications where a PLC is generating a simple sequence, the SLC takes over elementary tasks from the main control.
SLC is designed to act from event send to or generated in the frequency converter. The frequency converter then performs the pre-programmed action.

Illustration 6.4 Events and Actions

SLC Application Example

One sequence 1:
Start - ramp up - run at reference speed 2 seconds - ramp down and hold shaft until stop.

Illustration 6.5 Ramp Up/Ramp Down

Set the ramping times in 3-41 Ramp 1 Ramp Up Time and 3-42 Ramp 1 Ramp Down Time to the wanted times
tramp $=\frac{\text { tacc } \times \text { nnorm (par. } 1-25 \text {) }}{\text { ref }[P P M]}$
Set term 27 to No Operation (5-12 Terminal 27 Digital Input)
Set Preset reference 0 to first preset speed ($3-10$ Preset Reference [0]) in percentage of Max reference speed ($3-03$ Maximum Reference). Ex.: 60\%
Set preset reference 1 to second preset speed (3-10 Preset Reference [1] Ex.: 0\% (zero).
Set the timer 0 for constant running speed in 13-20 SL Controller Timer [0]. Ex.: 2 s
Set Event 1 in 13-51 SL Controller Event [1] to True [1]
Set Event 2 in 13-51 SL Controller Event [2] to On Reference [4]
Set Event 3 in 13-51 SL Controller Event [3] to Time Out 0 [30]
Set Event 4 in 13-51 SL Controller Event [4] to False [0]
Set Action 1 in 13-52 SL Controller Action [1] to Select preset 0 [10]
Set Action 2 in 13-52 SL Controller Action [2] to Start Timer 0 [29]
Set Action 3 in 13-52 SL Controller Action [3] to Select preset 1 [11]
Set Action 4 in 13-52 SL Controller Action [4] to No Action [1]
Set the in 13-00 SL Controller Mode to ON.

Application Examples

Start/stop command is applied on terminal 18. If the stop signal is applied, the frequency converter ramps down and goes into free mode.

Illustration 6.6 SLC Application Example

6.1.5 BASIC Cascade Controller

The BASIC Cascade Controller is used for pump applications where a certain pressure ("head") or level must be maintained over a wide dynamic range. Running a large pump at variable speed over a wide range is not an ideal solution because of low pump efficiency at lower speed. In a practical way, the limit is 25% of the rated full load speed for the pump.

In the BASIC Cascade Controller, the frequency converter controls a variable speed (lead) motor as the variable speed pump and can stage up to two additional constant speed pumps on and off. Connect the additional constant speed pumps directly to mains or via softstarters. By varying the speed of the initial pump, variable speed control of the entire system is provided, maintaining constant pressure while eliminating pressure surges, resulting in reduced system stress, and quieter operation in pumping systems.

130BA362.10

Illustration 6.7 BASIC Cascade Controller

Fixed Lead Pump

The motors must be of equal size. The BASIC Cascade Controller allows the frequency converter to control up to three equal size pumps using the frequency converter's 2 built-in relays. When the variable pump (lead) is connected directly to the frequency converter, the 2 built-in relays control the other two pumps. When lead pump alternations are enabled, pumps are connected to the built-in relays and the frequency converter can operate 2 pumps.

Application Examples

Lead Pump Alternation

The motors must be of equal size. This function makes it possible to cycle the frequency converter between the pumps in the system (maximum of two pumps). In this operation, the run time between pumps is equalised reducing the required pump maintenance and increasing reliability and lifetime of the system. The alternation of the lead pump can take place at a command signal or at staging (adding another pump).

The command can be a manual alternation or an alternation event signal. If the alternation event is selected, the lead pump alternation takes place every time the event occurs. Selections include whenever an alternation timer expires, at a predefined time of day or when the lead pump goes into sleep mode. The actual system load determines staging.

A separate parameter limits alternation only to take place if total capacity required is $>50 \%$. Total pump capacity is determined as lead pump plus fixed speed pumps capacities.

Bandwidth Management

In cascade control systems, to avoid frequent switching of fixed speed pumps, the desired system pressure is kept within a bandwidth rather than at a constant level. The staging bandwidth provides the required bandwidth for operation. When a large and quick change in system pressure occurs, the override bandwidth overrides the staging bandwidth to prevent immediate response to a short duration pressure change. An override bandwidth timer can be programmed to prevent staging until the system pressure has stabilised and normal control established.
When the cascade controller is enabled and the drive issues a trip alarm, the system head is maintained by staging and destaging fixed speed pumps. To prevent frequent staging and destaging and minimise pressure fluctuations, a wider fixed speed bandwidth is used instead of the staging bandwidth.

6.1.6 Pump Staging with Lead Pump Alternation

With lead pump alternation enabled, a maximum of two pumps are controlled. At an alternation command, the PID stops, the lead pump ramps to minimum frequency ($f_{\text {min }}$) and after a delay, it ramps to maximum frequency ($f_{\max }$). When the speed of the lead pump reaches the de-staging frequency, the fixed speed pump is cut out (de-staged). The lead pump continues to ramp up and then ramps down to a stop and the 2 relays are cut out.

130BA364.10

Illustration 6.8 Lead Pump Alternation

After a time delay, the relay for the fixed speed pump cuts in (staged) and this pump becomes the new lead pump. The new lead pump ramps up to maximum speed and then down to minimum speed. When ramping down and reaching the staging frequency, the old lead pump is now cut in (staged) on the mains as the new fixed speed pump.

If the lead pump has been running at minimum frequency ($f_{\text {min }}$) for a programmed amount of time, with a fixed speed pump running, the lead pump contributes little to the system. When programmed value of the timer expires, the lead pump is removed avoiding water heating problems.

6.1.7 System Status and Operation

If the lead pump goes into sleep mode, the function is displayed on the LCP. It is possible to alternate the lead pump on a sleep mode condition.

When the cascade controller is enabled, the operation status for each pump and the cascade controller is displayed on the LCP. Information displayed includes:

- Pumps Status, is a read out of the status for the relays assigned to each pump. The display shows pumps that are disabled, off, running on the frequency converter or running on the mains/ motor starter.
- Cascade Status, is a read out of the status for the Cascade Controller. The display shows that the Cascade Controller is disabled, all pumps are off, and emergency has stopped all pumps, all pumps are running, fixed speed pumps are being staged/de-staged and lead pump alternation is occurring.
- De-stage at no-flow ensures that all fixed speed pumps are stopped individually until the no-flow status disappears.

6.1.8 Cascade Controller Wiring Diagram

The wiring diagram shows an example with the built-in BASIC Cascade Controller with one variable speed pump (lead) and two fixed speed pumps, a $4-20 \mathrm{~mA}$ transmitter and System Safety Interlock.

Illustration 6.9 Cascade Controller Wiring Diagram

6.1.9 Fixed Variable Speed Pump Wiring Diagram

Illustration 6.10 Fixed Variable Speed Pump Wiring Diagram

- K1 blocks for K2 via the mechanical interlock preventing mains to be connected to the output of the frequency converter (via K1).
- Auxiliary break contact on K1 prevents K3 to cut in.
- RELAY 2 controls contactor K4 for on/off control of the fixed speed pump.
- At alternation, both relays deenergise and now RELAY 2 are energised as the first relay.

6.1.10 Lead Pump Alternation Wiring Diagram

Illustration 6.11 Lead Pump Alternation Wiring Diagram

Every pump must be connected to 2 contactors (K1/K2 and K3/K4) with a mechanical interlock. Thermal relays or other motor protection devices must be applied according to local regulation and/or individual demands.

- RELAY 1 (R1) and RELAY 2 (R2) are the built-in relays in the frequency converter.
- When all relays are de-energized, the first built-in relay that is energized cuts in the contactor corresponding to the pump controlled by the relay. For example, RELAY 1 cuts in contactor K1, which becomes the lead pump.

Application Examples
Design Guide

6.1.11 Start/Stop Conditions

Commands assigned to digital inputs. See parameter group 5-1* Digital Inputs.

	Variable speed pump (lead)	Fixed speed pumps
Start (SYSTEM START /STOP)	Ramps up (if stopped and there is a demand)	Staging (if stopped and there is a demand)
Lead Pump Start	Ramps up if SYSTEM START is active	Not affected
Coast (EMERGENCY STOP)	Coast to stop	Cut out (built in relays are de-energized)
Safety Interlock	Coast to stop	Cut out (built in relays are de-energized)

Table 6.1 Commands Assigned to Digital Input

	Variable speed pump (lead)	Fixed speed pumps
Hand On	Ramps up (if stopped by a normal stop command) or stays in operation if already running	Destaging (if running)
Off	Ramps down	Cut out
Auto On	Starts and stops according to commands via terminals or serial bus	Staging/Destaging

Table 6.2 Function of LCP Keys

7 RS-485 Installation and Set-up

7.1 Introduction

RS-485 is a 2-wire bus interface compatible with multi-drop network topology. Nodes can be connected as a bus, or via drop cables from a common trunk line. A total of 32 nodes can be connected to one network segment. Repeaters divide network segments. Note each repeater function as a node within the segment in which it is installed. Each node connected within a given network must have a unique node address, across all segments. Terminate each segment at both ends, using either the termination switch (S801) of the frequency converters or a biased termination resistor network. Always use screened twisted pair (STP) cable for bus cabling, and always follow good common installation practice.
Low-impedance earth connection of the screen at every node is important, including at high frequencies. Thus, connect a large surface of the screen to earth, e.g. with a cable clamp or a conductive cable gland. If necessary, apply potential-equalizing cables to maintain the same earth potential throughout the network. Particularly in installations with long cables.
To prevent impedance mismatch, always use the same type of cable throughout the entire network. When connecting a motor to the frequency converter, always use screened motor cable.

Cable	Screened twisted pair (STP)
Impedance	120Ω
Cable length	Max. $1,200 \mathrm{~m}$ (including drop lines)
Max. 500 m station-to-station	

Table 7.1 Motor Cable

7.1.1 Hardware Setup

Use the terminator dip switch on the main control board of the frequency converter to terminate the RS-485 bus.

Illustration 7.1 Terminator Switch Factory Setting

NOTICE

The factory setting for the dip switch is OFF.

7.1.2 Parameter Settings for Modbus Communication

The parameters in Table 7.2 apply to the RS-485 interface (FC-port)

Parameter	Function
8-30 Protocol	Select the application protocol to run on the RS-485 interface
8-31 Address	Set the node address. Note: The address range depends on the protocol selected in 8-30 Protocol
8-32 Baud Rate	Set the baud rate. Note: The default baud rate depends on the protocol selected in 8-30 Protocol
8-33 Parity / Stop Bits	Set the parity and number of stop bits. Note: The default selection depends on the protocol selected in 8-30 Protocol
8-35 Minimum Response Delay	Specify a minimum delay time between receiving a request and transmitting a response, which can be used for overcoming modem turnaround delays.
8-36 Max Response Delay	Specify a maximum delay time between transmitting a request and receiving a response.
8-37 Maximum Inter-Char Delay	Specify a maximum delay time between two received bytes to ensure timeout when transmission is interrupted.

Table 7.2 Modbus Communication Parameters

7.1.3 EMC Precautions

To achieve interference-free operation of the RS-485 network, the following EMC precautions are recommended.

Relevant national and local regulations, regarding protective earth connection, for example, must be observed. The RS-485 communication cable must be kept away from motor and brake resistor cables to avoid coupling of high-frequency noise from one cable to another. Normally a distance of $200 \mathrm{~mm}(8 \mathrm{in})$ is sufficient. However, in situations where cables run in parallel over long distances, keeping the greatest possible distance between cables is recommended. When crossing is
unavoidable, the RS-485 cable must cross motor and brake resistor cables at an angle of 90°.

Illustration 7.2 EMC Precautions

7.2 FC Protocol Overview

The FC protocol, also referred to as FC bus or Standard bus, is the Danfoss standard fieldbus. It defines an access technique according to the master-slave principle for communications via a serial bus.
One master and a maximum of 126 slaves can be connected to the bus. The master selects the individual slaves via an address character in the telegram. A slave itself can never transmit without first being requested to do so, and direct message transfer between the individual slaves is not possible. Communications occur in the halfduplex mode.
The master function cannot be transferred to another node (single-master system).

The physical layer is RS-485, thus utilising the RS-485 port built into the frequency converter. The FC protocol supports different telegram formats:

- A short format of 8 bytes for process data.
- A long format of 16 bytes that also includes a parameter channel.
- A format used for texts.

7.2.1 Modbus RTU

The FC protocol provides access to the control word and bus reference of the frequency converter.

The control word allows the Modbus master to control several important functions of the frequency converter:

- Start
- Stop of the frequency converter in various ways: Coast stop Quick stop DC Brake stop Normal (ramp) stop
- Reset after a fault trip
- Run at various preset speeds
- Run in reverse
- Change of the active set-up
- Control of the two relays built into the frequency converter

The bus reference is commonly used for speed control. It is also possible to access the parameters, read their values, and where possible, write values to them, permitting a range of control options, including controlling the setpoint of the frequency converter when its internal PID controller is used.

7.3 Network Connection

One or more frequency converters can be connected to a control (or master) using the RS-485 standardised interface. Terminal 68 is connected to the P signal ($\mathrm{TX}+$, $\mathrm{RX}+$), while terminal 69 is connected to the N signal (TX-, RX-). See illustrations in chapter 5.9.3 Earthing of Screened/Armoured Control Cables

If more than one frequency converter is connected to a master, use parallel connections.

Illustration 7.3 Parallel Connections

To avoid potential equalising currents in the screen, earth the cable screen via terminal 61 , which is connected to the frame via an RC-link.

Illustration 7.4 Control Card Terminals

7.4 FC Protocol Message Framing Structure

7.4.1 Content of a Character (Byte)

Each character transferred begins with a start bit. Then 8 data bits are transferred, each corresponding to a byte. Each character is secured via a parity bit. This bit is set at " 1 " when it reaches parity. Parity is when there is an equal number of 1 characters in the 8 data bits and the parity bit in total. A stop bit completes a character, thus consisting of 11 bits in all.

Illustration 7.5 Character (Byte)

7.4.2 Telegram Structure

Each telegram has the following structure:

1. Start character $(S T X)=02$ Hex
2. A byte denoting the telegram length (LGE)
3. A byte denoting the frequency converter address (ADR)
A number of data bytes (variable, depending on the type of telegram) follows.

A data control byte (BCC) completes the telegram.

Illustration 7.6 Telegram Structure

7.4.3 Telegram Length (LGE)

The telegram length is the number of data bytes plus the address byte ADR and the data control byte BCC.

- \quad The length of telegrams with 4 data bytes is LGE $=4+1+1=6$ bytes
- The length of telegrams with 12 data bytes is LGE $=12+1+1=14$ bytes
- The length of telegrams containing texts is $10^{1)}+\mathrm{n}$ bytes

1) The 10 represents the fixed characters, while the " n "" is variable (depending on the length of the text).

7.4.4 Frequency Converter Address (ADR)

Two different address formats are used.
The address range of the frequency converter is either 131 or 1-126.

1. Address format 1-31:

Bit 7=0 (address format 1-31 active)
Bit 6 is not used
Bit 5=1: Broadcast, address bits (0-4) are not used
Bit 5=0: No Broadcast
Bit 0-4=frequency converter address 1-31
2. Address format 1-126:

> Bit $7=1$ (address format $1-126$ active)
> Bit $0-6=$ frequency converter address $1-126$
> Bit $0-6=0$ Broadcast

The follower returns the address byte unchanged to the master in the response telegram.

7.4.5 Data Control Byte (BCC)

The checksum is calculated as an XOR-function. Before the first byte in the telegram is received, the Calculated Checksum is 0 .

7.4.6 The Data Field

The structure of data blocks depends on the type of telegram. There are 3 types, and the type applies for both control telegrams (master \Rightarrow follower) and response telegrams (follower \Rightarrow master).

The 3 types of telegram are:

Process block (PCD)

The PCD is made up of a data block of 4 bytes (2 words) and contains:

- Control word and reference value (from master to follower)
- Status word and present output frequency (from follower to master)

Illustration 7.7 PCD

Parameter block

The parameter block is used to transfer parameters between master and follower. The data block is made up of 12 bytes (6 words) and also contains the process block.

Illustration 7.8 Parameter Block

Text block

The text block is used to read or write texts via the data block.

[^12]RS-485 Installation and Set...

Design Guide

7.4.7 The PKE Field

The PKE field contains 2 sub fields:

- Parameter command and response AK
- Parameter number PNU

1514131211109876543210

Parameter
commands
and replies

Illustration 7.10 PKE Field

Bits no. 12-15 transfer parameter commands from master to follower and return processed follower responses to the master.

Bit no.			Parameter command	
15	14	13	12	
0	0	0	0	No command
0	0	0	1	Read parameter value
0	0	1	0	Write parameter value in RAM (word)
0	0	1	1	Write parameter value in RAM (double word)
1	1	0	1	Write parameter value in RAM and EEprom (double word)
1	1	1	0	Write parameter value in RAM and EEprom (word)
1	1	1	1	Read/write text

Table 7.3 Parameter Commands Master=Follower

Bit no.			Response	
$\mathbf{1 5}$	14	13	12	
0	0	0	0	No response
0	0	0	1	Parameter value transferred (word)
0	0	1	0	Parameter value transferred (double word)
0	1	1	1	Command cannot be performed
1	1	1	1	text transferred

Table 7.4 Response Follower \Rightarrow Master

If the command cannot be performed, the follower sends this response:
0111 Command cannot be performed

- and issues the following fault report in the parameter value (PWE):

PWE low (hex)	Fault report 0
1	The parameter number used does not exist
2	Data value exceeds the parameter limits
3	The sub index used does not exist
4	The parameter is not the array type
5	The data type does not match the defined parameter
11	Data change in the defined parameter is not possible in the present mode of the frequency converter. Certain parameters can only be changed when the motor is turned off
82	There is no bus access to the defined parameter
83	Data change is not possible because factory setup is selected

Table 7.5 Fault Report

7.4.8 Parameter Number (PNU)

Bits no. 0-11 transfer parameter numbers. The function of the relevant parameter is defined in the parameter description in the Programming Guide.

7.4.9 Index (IND)

The index is used together with the parameter number to read/write-access parameters with an index, for example, 15-30 Alarm Log: Error Code. The index consists of a low byte and a high byte.

Only the low byte is used as an index.

7.4.10 Parameter Value (PWE)

The parameter value block consists of 2 words (4 bytes), and the value depends on the defined command (AK). The master prompts for a parameter value when the PWE block contains no value. To change a parameter value (write), write the new value in the PWE block and send from the master to the follower.

When a follower responds to a parameter request (read command), the present parameter value in the PWE block is transferred and returned to the master. If a parameter contains not a numerical value but several data options, for example, 0-01 Language [0] English, and [4] Danish, select the data value by entering the value in the PWE

RS-485 Installation and Set...

Design Guide

block. Serial communication is only capable of reading parameters containing data type 9 (text string).

15-40 FC Type to 15-53 Power Card Serial Number contain data type 9.
For example, read the unit size and mains voltage range in 15-40 FC Type. When a text string is transferred (read), the length of the telegram is variable, and the texts are of different lengths. The telegram length is defined in the second byte of the telegram, LGE. When using text transfer, the index character indicates whether it is a read or a write command.

To read a text via the PWE block, set the parameter command (AK) to 'F' Hex. The index character high-byte must be " 4. ."

Some parameters contain text that can be written via the serial bus. To write a text via the PWE block, set the parameter command (AK) to ' F ' Hex. The index characters high-byte must be " 5 ."

Illustration 7.11 PWE

7.4.11 Data Types Supported

Unsigned means that there is no operational sign in the telegram.

Data types	Description
3	Integer 16
4	Integer 32
5	Unsigned 8
6	Unsigned 16
7	Unsigned 32
9	Text string
10	Byte string
13	Time difference
33	Reserved
35	Bit sequence

Table 7.6 Data Types Supported

7.4.12 Conversion

The various attributes of each parameter are displayed in the section factory settings. Parameter values are transferred as whole numbers only. Conversion factors are therefore used to transfer decimals.

4-12 Motor Speed Low Limit [Hz] has a conversion factor of 0.1 .

To preset the minimum frequency to 10 Hz , transfer the value 100. A conversion factor of 0.1 means that the value transferred is multiplied by 0.1. The value 100 is thus perceived as 10.0.

Examples:

$0 \mathrm{~s} \Rightarrow$ conversion index 0
$0.00 \mathrm{~s} \Rightarrow$ conversion index -2
$0 \mathrm{~ms} \Rightarrow$ conversion index -3
$0.00 \mathrm{~ms} \Rightarrow$ conversion index -5

Conversion index	Conversion factor
100	
75	
74	
67	1000000
6	100000
5	10000
4	1000
3	100
2	10
1	1
0	0.1
-1	0.01
-2	0.001
-3	0.0001
-4	0.00001
-5	0.000001
-6	0.0000001
-7	

Table 7.7 Conversion Table

7.4.13 Process Words (PCD)

The block of process words is divided into two blocks of 16 bits, which always occur in the defined sequence.

PCD 1	PCD 2
Control Telegram (master \Rightarrow follower Control word)	Reference-value
Control Telegram (follower \Rightarrow master) Status word	Present output frequency

Table 7.8 PCD Sequence

7.5 Examples

7.5.1 Writing a Parameter Value

Change 4-14 Motor Speed High Limit [Hz] to 100 Hz . Write the data in EEPROM.

PKE=E19E Hex - Write single word in 4-14 Motor Speed High Limit [Hz]
IND=0000 Hex
PWEhigh $=0000$ Hex
PWE ${ }_{\text {low }}=03 E 8$ Hex - Data value 1,000 , corresponding to 100 Hz , see chapter 7.4.12 Conversion.

NOTICE

4-14 Motor Speed High Limit [Hz] is a single word, and the parameter command for write in EEPROM is "E."
Parameter number 4-14 is 19E in hexadecimal.

Illustration 7.13 Response from Master to Follower

7.5.2 Reading a Parameter Value

Read the value in 3-41 Ramp 1 Ramp Up Time

PKE=1,155 Hex - Read parameter value in 3-41 Ramp 1 Ramp Up Time
IND=0000 Hex
PWEhigh=0000 Hex
PWE ${ }_{\text {low }}=0000$ Hex

Illustration 7.14 Parameter Value

If the value in 3-41 Ramp 1 Ramp Up Time is 10 s , the response from the follower to the master is:

Illustration 7.15 Response from Follower to Master

3 E8 Hex corresponds to 1000 decimal. The conversion index for 3-41 Ramp 1 Ramp Up Time is -2.
3-41 Ramp 1 Ramp Up Time is of the type Unsigned 32.

7.6 Modbus RTU Overview

7.6.1 Assumptions

Danfoss assumes that the installed controller supports the interfaces in this manual, and strictly observes all requirements and limitations stipulated in the controller and frequency converter.

7.6.2 Prerequisite Knowledge

The Modbus RTU (Remote Terminal Unit) is designed to communicate with any controller that supports the interfaces defined in this document. It is assumed that the reader has full knowledge of the capabilities and limitations of the controller.

7.6.3 Modbus RTU Overview

Regardless of the type of physical communication networks, the Modbus RTU Overview describes the process a controller uses to request access to another device. This process includes how the Modbus RTU responds to requests from another device, and how errors are detected and reported. It also establishes a common format for the layout and contents of message fields.
During communications over a Modbus RTU network, the protocol determines:

- How each controller learns its device address
- Recognises a message addressed to it
- Determines which actions to take
- Extracts any data or other information contained in the message
If a reply is required, the controller constructs the reply message and sends it.
Controllers communicate using a master-follower technique in which only one device (the master) can initiate transactions (called queries). The other devices (slaves) respond by supplying the requested data to the master, or by responding to the the query.
The master can address individual slaves, or can initiate a broadcast message to all slaves. Slaves return a message, called a response, to queries that are addressed to them individually. No responses are returned to broadcast

RS-485 Installation and Set...
queries from the master. The Modbus RTU protocol establishes the format for the master query by placing into it the device (or broadcast) address, a function code defining the requested action, any data to send, and an error-checking field. The follower response message is also constructed using Modbus protocol. It contains fields confirming the action taken, any data to return, and an error-checking field. If an error occurs in receipt of the message, or if the follower is unable to perform the requested action, the follower constructs an error message, and send it in response, or a time-out occurs.

7.6.4 Frequency Converter with Modbus RTU

The frequency converter communicates in Modbus RTU format over the built-in RS-485 interface. Modbus RTU provides access to the control word and bus reference of the frequency converter.

The control word allows the Modbus master to control several important functions of the frequency converter:

- Start
- Stop of the frequency converter in various ways: Coast stop
Quick stop
DC Brake stop
Normal (ramp) stop
- Reset after a fault trip
- Run at various preset speeds
- Run in reverse
- Change the active set-up
- Control the built-in relay of the frequency converter

The bus reference is commonly used for speed control. It is also possible to access the parameters, read their values, and, where possible, write values to them, permitting a range of control options, including controlling the setpoint of the frequency converter when its internal PI controller is used.

7.7 Network Configuration

7.7.1 Frequency Converter with Modbus RTU

To enable Modbus RTU on the frequency converter, set the following parameters:

Parameter	Setting
$8-30$ Protocol	Modbus RTU
$8-31$ Address	$1-247$
$8-32$ Baud Rate	$2400-115200$
$8-33$ Parity / Stop Bits	Even parity, 1 stop bit (default)

7.8 Modbus RTU Message Framing Structure

7.8.1 Frequency Converter with Modbus RTU

The controllers are set up to communicate on the Modbus network using RTU (Remote Terminal Unit) mode, with each byte in a message containing 24 -bit hexadecimal characters. The format for each byte is shown in Table 7.9.

Start bit	Data byte						Stop/ Parity	Stop		

Table 7.9 Example Format

Coding System	8-bit binary, hexadecimal 0-9, A-F. two hexadecimal characters contained in each 8- bit field of the message
Bits Per Byte	1 start bit 8 data bits, least significant bit sent first 1 bit for even/odd parity; no bit for no parity 1 stop bit if parity is used; 2 bits if no parity
Error Check Field	Cyclical Redundancy Check (CRC)

Table 7.10 Bit Detail

7.8.2 Modbus RTU Message Structure

The transmitting device places a Modbus RTU message into a frame with a known beginning and ending point. Receiving devices are able to begin at the start of the message, read the address portion, determine which device is addressed (or all devices, if the message is broadcast), and to recognise when the message is completed. Partial messages are detected and errors set as a result. Characters for transmission must be in hexadecimal 00 to FF format in each field. The frequency converter continuously monitors the network bus, also during 'silent' intervals. When the first field (the address

RS-485 Installation and Set...
field) is received, each frequency converter or device decodes it to determine which device is being addressed. Modbus RTU messages addressed to zero are broadcast messages. No response is permitted for broadcast messages. A typical message frame is shown in Table 7.11.

Start	Address	Function	Data	CRC check	End
T1-T2-T3- T4	8 bits	8 bits	$\mathrm{N} \times 8$ bits	16 bits	T1-T2-T3- T4

Table 7.11 Typical Modbus RTU Message Structure

7.8.3 Start/Stop Field

Messages start with a silent period of at least 3.5 character intervals, implemented as a multiple of character intervals at the selected network baud rate (shown as Start T1-T2-T3-T4). The first transmitted field is the device address. Following the last transmitted character, a similar period of at least 3.5 character intervals marks the end of the message. A new message can begin after this period. The entire message frame must be transmitted as a continuous stream. If a silent period of more than 1.5 character intervals occurs before completion of the frame, the receiving device flushes the incomplete message and assumes that the next byte is the address field of a new message. Similarly, if a new message begins before 3.5 character intervals after a previous message, the receiving device considers it a continuation of the previous message, causing a time-out (no response from the follower), since the value in the final CRC field is not valid for the combined messages.

7.8.4 Address Field

The address field of a message frame contains 8 bits. Valid follower device addresses are in the range of $0-247$ decimal. The individual follower devices are assigned addresses in the range of $1-247$. (0 is reserved for broadcast mode, which all slaves recognise.) A master addresses a follower by placing the follower address in the address field of the message. When the follower sends its response, it places its own address in this address field to let the master know which follower is responding.

7.8.5 Function Field

The function field of a message frame contains 8 bits. Valid codes are in the range of 1-FF. Function fields are used to send messages between master and follower. When a message is sent from a master to a follower device, the function code field tells the follower what action to perform. When the follower responds to the master, it uses the function code field to indicate either a normal (errorfree) response, or that an error has occurred (called an exception response). For a normal response, the follower
simply echoes the original function code. For an exception response, the follower returns a code that is equivalent to the original function code with its most significant bit set to logic 1. In addition, the follower places a unique code into the data field of the response message. This code tells the master what error occurred, or the reason for the exception. See chapter 7.8.9 Function Codes Supported by Modbus RTU.

7.8.6 Data Field

The data field is constructed using sets of 2 hexadecimal digits, in the range of 00 to FF hexadecimal. These sequences are made up of one RTU character. The data field of messages sent from a master to follower device contains more information, which the follower must use to do what is defined by the function code. This information can include items such as coil or register addresses, the quantity of items, and the count of actual data bytes in the field.

7.8.7 CRC Check Field

Messages include an error-checking field, operating based on a Cyclical Redundancy Check (CRC) method. The CRC field checks the contents of the entire message. It is applied regardless of any parity check method used for the individual characters of the message. The transmitting device calculates the CRC value then appends the CRC as the last field in the message. The receiving device recalculates a CRC during receipt of the message and compares the calculated value to the actual value received in the CRC field. If the 2 values are unequal, a bus time-out results. The error-checking field contains a 16-bit binary value implemented as 28 -bit bytes. After error-checking, the low-order byte of the field is appended first, followed by the high-order byte. The CRC high-order byte is the last byte sent in the message.

Design Guide

7.8.8 Coil Register Addressing

In Modbus, all data are organised in coils and holding registers. Coils hold a single bit, whereas holding registers hold a 2 byte word (16 bits). All data addresses in Modbus messages are referenced to zero. The first occurrence of a data item is addressed as item number zero. For example: The coil known as 'coil 1' in a programmable controller is addressed as coil 0000 in the data address field of a Modbus message. Coil 127 decimal is addressed as coil 007EHEX (126 decimal). Holding register 40001 is addressed as register 0000 in the data address field of the message. The function code field already specifies a 'holding register' operation. Therefore, the ' 4 XXXX' reference is implicit. Holding register 40108 is addressed as register 006BHEX (107 decimal).

Coil number	Description	Signal direction
$1-16$	Frequency converter control word (see Table 7.13)	Master to follower
$17-32$	Frequency converter speed or set-point reference Range 0x0-0xFFFF (-200\% ... $\sim 200 \%)$	Master to follower
$33-48$	Frequency converter status word (see Table 7.13)	Follower to master
$49-64$	Open loop mode: Frequency converter output frequency Closed loop mode: Frequency converter feedback signal	Follower to master
65	Parameter write control (master to follower)	Master to follower
	$0=$ Parameter changes are written to the RAM of the frequency converter 1=Parameter changes are written to the RAM and EEPROM of the frequency converter. $66-65536$ Reserved	

Table 7.12 Coils and Holding Registers

RS-485 Installation and Set...
Design Guide

Coil	$\mathbf{0}$	$\mathbf{1}$	
01	Preset reference LSB		
02	Preset reference MSB		
03	DC brake	No DC brake	
04	Coast stop	No coast stop	
05	Quick stop	No quick stop	
06	Freeze freq.	No freeze freq.	
07	Ramp stop	Start	
08	No reset	Reset	
09	No jog	Jog	
10	Ramp 1	Ramp 2	
11	Data not valid	Data valid	
12	Relay 1 off	Relay 1 on	
13	Relay 2 off	Relay 2 on	
14	Set up LSB		
15	Set up MSB	Reversing	
16	No reversing		

Table 7.13 Frequency Converter Control Word (FC Profile)

Coil	$\mathbf{0}$	$\mathbf{1}$
33	Control not ready	Control ready
34	frequency converter not	frequency converter ready
ready	Coasting stop	Safety closed
35	No alarm	Alarm
36	Not used	Not used
37	Not used	Not used
38	Not used	Not used
39	No warning	Warning
40	Not at reference	At reference
41	Ound mode	In frequency range
42	Stopped	Running
43	Not used	Not used
44	No voltage warning	Voltage warning
45	Not in current limit	Current limit
46	No thermal warning	Thermal warning
47		
48		

Table 7.14 Frequency Converter Status Word (FC Profile)

Register number	Description
$00001-00006$	Reserved
00007	Last error code from an FC data object interface
00008	Reserved
00009	Parameter index*
$00010-00990$	000 parameter group (parameters 001 through 099)
$01000-01990$	100 parameter group (parameters 100 through 199)
$02000-02990$	200 parameter group (parameters 200 through 299)
$03000-03990$	300 parameter group (parameters 300 through 399)
$04000-04990$	400 parameter group (parameters 400 through 499)
\ldots	\ldots
$49000-49990$	4900 parameter group (parameters 4900 through 4999)
50000	Input data: frequency converter control word register (CTW).
50010	Input data: Bus reference register (REF).
\ldots	\ldots
50200	Output data: frequency converter status word register (STW).
50210	Output data: frequency converter main actual value register (MAV).

Table 7.15 Holding Registers

* Used to specify the index number used when accessing an indexed parameter.

RS-485 Installation and Set...

7.8.9 Function Codes Supported by Modbus RTU

Modbus RTU supports use of the function codes in Table 7.16 in the function field of a message.

Function	Function code
Read coils	1 hex
Read holding registers	3 hex
Write single coil	5 hex
Write single register	6 hex
Write multiple coils	F hex
Write multiple registers	10 hex
Get comm. event counter	B hex
Report follower ID	11 hex

Function	Function code	Sub- function code	Sub-function
Diagnostics 8	1	Restart communication	
		2	Return diagnostic register
		10	Clear counters and diagnostic register
		11	Return bus message count
12	Return bus communication error count		
		13	Return bus exception error count
		14	Return follower message count

Table 7.17 Function Codes

Table 7.16 Function Codes

7.8.10 Database Error Codes

In the event of an error, the following error codes may appear in the data field of a response message. For a full explanation of the structure of an exception (error) response, refer to chapter 7.8.5 Function Field.

Error Code in data field (decimal)	Database Error Code description
00	The parameter number does not exist
01	There is no write access to the parameter
02	The data value exceeds the parameter limits
03	The sub-index in use does not exist
04	The parameter is not of the array type
05	The data type does not match the parameter called
06	Only reset
07	Not changeable
11	No write access
17	Data change in the parameter called is not possible in the present mode
18	Other error
64	Invalid data address
65	Invalid message length
66	Invalid data length or value
67	Invalid function code
130	There is no bus access to the parameter called
131	Data change is not possible because factory set-up is selected

Table 7.18 Error Codes

RS-485 Installation and Set...

7.9 How to Access Parameters

7.9.1 Parameter Handling

The PNU (Parameter Number) is translated from the register address contained in the Modbus read or write message. The parameter number is translated to Modbus as (10xparameter number) DECIMAL.

7.9.2 Storage of Data

The Coil 65 decimal determines whether data written to the frequency converter is stored in EEPROM and RAM (coil $65=1$) or only in RAM (coil 65=0).

7.9.3 IND

The array index is set in holding register 9 and used when accessing array parameters.

7.9.4 Text Blocks

Parameters stored as text strings are accessed in the same way as the other parameters. The maximum text block size is 20 characters. If a read request for a parameter is for more characters than the parameter stores, the response is truncated. If the read request for a parameter is for fewer characters than the parameter stores, the response is space filled.

7.9.5 Conversion Factor

The different attributes for each parameter can be seen in the section on factory settings. Since a parameter value can only be transferred as a whole number, a conversion factor must be used to transfer decimals.

7.9.6 Parameter Values

Standard data types

Standard data types are int16, int32, uint8, uint16, and uint32. They are stored as $4 x$ registers (40001-4FFFF). The parameters are read using function 03 HEX "Read Holding Registers." Parameters are written using the function 6 HEX "Preset Single Register" for 1 register (16-bits), and the function 10 HEX "Preset Multiple Registers" for 2 registers (32 -bits). Readable sizes range from 1 register (16 bits) up to 10 registers (20 characters).

Non-standard data types

Non-standard data types are text strings and are stored as $4 x$ registers (40001-4FFFF). The parameters are read using function 03 HEX "Read Holding Registers" and written using function 10 HEX "Preset Multiple Registers." Readable sizes range from 1 register (2 characters) up to 10 registers (20 characters).

7.10 Examples

7.10.1 Read Coil Status (01 HEX)

Description

This function reads the ON/OFF status of discrete outputs (coils) in the frequency converter. Broadcast is never supported for reads.

Query

The query message specifies the starting coil and quantity of coils to read. Coil addresses start at zero.

Example of a request to read coils 33-48 (Status Word) from slave device 01 .

Field Name	Example (HEX)
Slave Address	01 (frequency converter address)
Function	01 (read coils)
Starting Address HI	00
Starting Address LO	20 (32 decimals) Coil 33
No. of Points HI	00
No. of Points LO	10 (16 decimals)
Error Check (CRC)	-

Table 7.19 Query

Response

The coil status in the response message is packed as one coil per bit of the data field. Status is indicated as: $1=\mathrm{ON}$; $0=$ OFF. The LSB of the first data byte contains the coil addressed in the query. The other coils follow toward the high-order end of this byte, and from 'low order to high order' in subsequent bytes.
If the returned coil quantity is not a multiple of eight, the remaining bits in the final data byte are padded with zeros (toward the high-order end of the byte). The Byte Count field specifies the number of complete bytes of data.

Field Name	Example (HEX)
Slave Address	01 (frequency converter address)
Function	01 (read coils)
Byte Count	02 (2 bytes of data)
Data (Coils 40-33)	07
Data (Coils 48-41)	06 (STW=0607hex)
Error Check (CRC)	-

Table 7.20 Response

NOTICE

Coils and registers are addressed explicit with an off-set of -1 in Modbus.
Coil 33 is addressed as Coil 32, for example.

RS-485 Installation and Set...

7.10.2 Force/Write Single Coil (05 HEX)

Description

This function forces the coil to either ON or OFF. When broadcast, the function forces the same coil references in all attached slaves.

Query

The query message specifies the coil 65 (parameter write control) to be forced. Coil addresses start at zero. Force Data $=00$ OOHEX (OFF) or FF OOHEX (ON).

Field Name	Example (HEX)
Slave Address	01 (frequency converter address)
Function	05 (write single coil)
Coil Address HI	00
Coil Address LO	40 (64 decimal) Coil 65
Force Data HI	FF
Force Data LO	00 (FF 00 = ON)
Error Check (CRC)	-

Table 7.21 Query

Response

The normal response is an echo of the query, returned after the coil state has been forced.

Field Name	Example (HEX)
Slave Address	01
Function	05
Force Data HI	FF
Force Data LO	00
Quantity of Coils HI	00
Quantity of Coils LO	01
Error Check (CRC)	-

Table 7.22 Response

7.10.3 Force/Write Multiple Coils (OF HEX)

This function forces each coil in a sequence of coils to either ON or OFF. When broadcast, the function forces the same coil references in all attached slaves.

The query message specifies the coils 17-32 (speed setpoint) to be forced.

NOTICE

Coil addresses start at zero, so coil 17 is addressed as 16 , for example.

Field Name	Example (HEX)
Slave Address	01 (frequency converter address)
Function	0 F (write multiple coils)
Coil Address HI	00
Coil Address LO	10 (coil address 17)
Quantity of Coils HI	00
Quantity of Coils LO	10 (16 coils)
Byte Count	02
Force Data HI (Coils 8-1)	20
Force Data LO (Coils 16-9)	00 (ref. $=2000$ hex)
Error Check (CRC)	-

Table 7.23 Query

Response

The normal response returns the slave address, function code, starting address, and quantity of coils forced.

Field Name	Example (HEX)
Slave Address	01 (frequency converter address)
Function	0 F (write multiple coils)
Coil Address HI	00
Coil Address LO	10 (coil address 17)
Quantity of Coils HI	00
Quantity of Coils LO	10 (16 coils)
Error Check (CRC)	-

Table 7.24 Response

7.10.4 Read Holding Registers (03 HEX)

Description

This function reads the contents of holding registers in the slave.

Query

The query message specifies the starting register and quantity of registers to read. Register addresses start at zero, that is, registers 1-4 are addressed as 0-3.

Example: Read 3-03 Maximum Reference, register 03030.

Field Name	Example (HEX)
Slave Address	01
Function	03 (read holding registers)
Starting Address HI	0 B (Register address 3029)
Starting Address LO	D5 (Register address 3029)
No. of Points HI	00
No. of Points LO	02 - (Par. 3-03 is 32 bits long, that is, 2 registers)
Error Check (CRC)	-

Table 7.25 Query

Response

The register data in the response message are packed as 2 bytes per register, with the binary contents right justified within each byte. For each register, the first byte contains

RS-485 Installation and Set...
the high-order bits and the second contains the low-order bits.

Example: Hex $0016 \mathrm{E} 360=1.500 .000=1,500$ RPM.

Field Name	Example (HEX)
Slave Address	01
Function	03
Byte Count	04
Data HI (Register 3030)	00
Data LO (Register 3030)	16
Data HI (Register 3031)	E3
Data LO (Register 3031)	60
Error Check (CRC)	-

Table 7.26 Response

7.10.5 Preset Single Register (06 HEX)

Description

This function presets a value into a single holding register.

Query

The query message specifies the register reference to be preset. Register addresses start at zero, that is, register 1 is addressed as 0 .

Example: Write to 1-00 Configuration Mode, register 1000.

Field Name	Example (HEX)
Slave Address	01
Function	06
Register Address HI	03 (Register address 999)
Register Address LO	E7 (Register address 999)
Preset Data HI	00
Preset Data LO	01
Error Check (CRC)	-

Table 7.27 Query

Response

The normal response is an echo of the query, returned after the register contents have been passed.

Field Name	Example (HEX)
Slave Address	01
Function	06
Register Address HI	03
Register Address LO	E7
Preset Data HI	00
Preset Data LO	01
Error Check (CRC)	-

7.11 Danfoss FC Control Profile

7.11.1 Control Word According to FC Profile

Bit	Bit value $=\mathbf{0}$	Bit value=1
00	Reference value	external selection Isb
01	Reference value	external selection msb
02	DC brake	Ramp
03	Coasting	No coasting
04	Quick stop	Ramp
05	Hold output frequency	use ramp
06	Ramp stop	Start
07	No function	Reset
08	No function	Jog
09	Ramp 1	Ramp 2
10	Data invalid	Data valid
11	No function	Relay 01 active
12	No function	Relay 02 active
13	Parameter set-up	selection Isb
14	Parameter set-up	selection msb
15	No function	Reverse

Explanation of the control bits

 Bits 00/01Bits 00 and 01 are used to select between the 4 reference values, which are pre-programmed in 3-10 Preset Reference according to Table 7.29.

Programmed reference value	Parameter	Bit 01	Bit 00
1	[0] 3-10 Preset Reference	0	0
2	[1] 3-10 Preset Reference	0	1
3	[2] 3-10 Preset Reference	1	0
4	[3] 3-10 Preset Reference	1	1

Table 7.29 Control Bits

Table 7.28 Response

NOTICE

Make a selection in 8-56 Preset Reference Select to define how Bit 00/01 gates with the corresponding function on the digital inputs.

Bit 02, DC brake

Bit 02='0' leads to DC braking and stop. Set braking current and duration in 2-01 DC Brake Current and 2-02 DC Braking Time.
Bit $02={ }^{\prime} 1^{\prime}$ leads to ramping.
Bit 03, Coasting
Bit 03='0': The frequency converter immediately "lets go" of the motor (the output transistors are "shut off") and it coasts to a standstill.
Bit $03=$ ' 1 ': The frequency converter starts the motor if the other starting conditions are met.

Make a selection in 8-50 Coasting Select to define how Bit 03 gates with the corresponding function on a digital input.

Bit 04, Quick stop

Bit 04='0': Makes the motor speed ramp down to stop (set in 3-81 Quick Stop Ramp Time).
Bit 05, Hold output frequency
Bit $05==^{\prime} 0^{\prime}$: The present output frequency (in Hz) freezes. Change the frozen output frequency only with the digital inputs (5-10 Terminal 18 Digital Input to 5-15 Terminal 33 Digital Input) programmed to Speed up and Slow down.

NOTICE

If freeze output is active, only the following conditions can stop the frequency converter:

- Bit 03 Coasting stop.
- Bit 02 DC braking.
- Digital input (5-10 Terminal 18 Digital Input to 5-15 Terminal 33 Digital Input) programmed to DC braking, Coasting stop, or Reset and coasting stop.

Bit 06, Ramp stop/start

Bit 06='0': Causes a stop and makes the motor speed ramp down to stop via the selected ramp down parameter. Bit 06='1': Permits the frequency converter to start the motor, if the other starting conditions are met.

Make a selection in 8 -53 Start Select to define how Bit 06 Ramp stop/start gates with the corresponding function on a digital input.

Bit 07, Reset

Bit 07='0': No reset.
Bit $07=^{\prime} 1^{\prime}$: Resets a trip. Reset is activated on the leading edge of the signal, that is, when changing from logic ' 0 ' to logic '1'.

Bit 08, Jog
Bit $08={ }^{\prime} 1$ ': The output frequency depends on3-19 Jog Speed [RPM].
Bit 09, Selection of ramp $1 / 2$
Bit 09="0": Ramp 1 is active (3-41 Ramp 1 Ramp Up Time to 3-42 Ramp 1 Ramp Down Time).
Bit 09="1": Ramp 2 (3-51 Ramp 2 Ramp Up Time to 3-52 Ramp 2 Ramp Down Time) is active.

Bit 10, Data not valid/Data valid

Tell the frequency converter whether to use or ignore the control word. Bit $10=^{\prime} 0^{\prime}$: The control word is ignored. Bit $10=^{\prime} 1^{\prime}$: The control word is used. This function is relevant because the telegram always contains the control word, regardless of the telegram type. Thus, it is possible to turn off the control word if not in use when updating or reading parameters.
Bit 11, Relay 01
Bit 11="0": Relay not activated.
Bit 11="1": Relay 01 activated if Control word bit 11 is chosen in 5-40 Function Relay.

Bit 12, Relay 04

Bit $12=$ " 0 ": Relay 04 is not activated.
Bit $12=121$ ": Relay 04 is activated if Control word bit 12 is chosen in 5-40 Function Relay.

Bit $13 / 14$, Selection of set-up
Use bits 13 and 14 to select from the 4 menu set-ups according to Table 7.30.

Set-up	Bit 14	Bit 13
1	0	0
2	0	1
3	1	0
4	1	1

Table 7.30 Selection of Set-Up

The function is only possible when Multi Set-Ups is selected in 0-10 Active Set-up.
Make a selection in 8-55 Set-up Select to define how Bit $13 / 14$ gates with the corresponding function on the digital inputs.

Bit 15 Reverse

Bit $15==^{\prime} 0^{\prime}$: No reversing.
Bit $15=^{\prime} 1^{\prime}$: Reversing. In the default setting, reversing is set to digital in 8-54 Reversing Select. Bit 15 causes reversing only when Ser. communication, Logic, or Logic and is selected.

7.11.2 Status Word According to FC Profile

Illustration 7.17 STW Follower to Master

Bit	Bit=0	Bit=1
00	Control not ready	Control ready
01	Drive not ready	Drive ready
02	Coasting	Enable
03	No error	Trip
04	No error	Error (no trip)
05	Reserved	-
06	No error	Triplock
07	No warning	Warning
08	Speed \neq reference	Speed=reference
09	Local operation	Bus control
10	Out of frequency limit	Frequency limit OK
11	No operation	In operation
12	Drive OK	Stopped, auto start
13	Voltage OK	Voltage exceeded
14	Torque OK	Torque exceeded
15	Timer OK	Timer exceeded

Explanation of the status bits

Bit 00, Control not ready/ready

Bit $00={ }^{\prime} 0^{\prime}$: The frequency converter trips.
Bit $00==^{\prime} 1$: The frequency converter controls are ready but the power component does not necessarily receive any power supply (in case of external 24 V supply to controls).

Bit 01, Drive ready

Bit $01=$ ' 1 ': The frequency converter is ready for operation but the coasting command is active via the digital inputs or via serial communication.

Bit 02, Coasting stop

Bit $02={ }^{\prime} 0$ ': The frequency converter releases the motor.
Bit $02=^{\prime} 1^{\prime}$: The frequency converter starts the motor with a start command.

Bit 03, No error/trip

Bit 03='0': The frequency converter is not in fault mode. Bit $03==^{\prime} 1$: The frequency converter trips. To re-establish operation, enter [Reset].

Bit 04, No error/error (no trip)

Bit 04='0': The frequency converter is not in fault mode. Bit 04=" 1 ": The frequency converter shows an error but does not trip.

Bit 05, Not used

Bit 05 is not used in the status word.

Bit 06, No error/triplock

Bit $06==^{\prime} 0$: The frequency converter is not in fault mode.
Bit $06=" 1$ ": The frequency converter is tripped and locked.
Bit 07, No warning/warning
Bit $07==^{\prime} 0^{\prime}$: There are no warnings.
Bit 07='1': A warning has occurred.

Bit 08, Speed \neq reference/speed=reference

Bit $08={ }^{\prime} 0^{\prime}$: The motor is running but the present speed is different from the preset speed reference. It could be the case when the speed ramps up/down during start/stop. Bit $08==^{\prime} 1$ ': The motor speed matches the preset speed reference.

Bit 09, Local operation/bus control

Bit 09='0': [Stop/Reset] is activated on the control unit or Local control in 3-13 Reference Site is selected. The frequency converter cannot be controlled via serial communication.
Bit $09=^{\prime} 1^{\prime}$ It is possible to control the frequency converter via the fieldbus/serial communication.

Bit 10, Out of frequency limit

Bit $10={ }^{\prime} 0^{\prime}$: The output frequency has reached the value in 4-11 Motor Speed Low Limit [RPM] or 4-13 Motor Speed High Limit [RPM].
Bit $10=$ " 1 ": The output frequency is within the defined limits.
Bit 11, No operation/in operation
Bit $11==^{\prime} 0^{\prime}$: The motor is not running.
Bit $11=^{\prime} 1^{\prime}$: The frequency converter has a start signal or the output frequency is greater than 0 Hz .
Bit 12, Drive OK/stopped, autostart
Bit $12=^{\prime} 0^{\prime}$: There is no temporary over temperature on the inverter.
Bit $12==^{\prime} 1$: The inverter stops because of over temperature but the unit does not trip and resumes operation once the over temperature stops.

Bit 13, Voltage OK/limit exceeded

Bit $13==^{\prime} 0^{\prime}$: There are no voltage warnings.
Bit $13=^{\prime} 1$ ': The DC voltage in the intermediate circuit is too low or too high.

Bit 14, Torque OK/limit exceeded

Bit $14=^{\prime} 0^{\prime}$: The motor current is lower than the torque limit selected in 4-18 Current Limit.
Bit $14=^{\prime} 1$ ': The torque limit in $4-18$ Current Limit is exceeded.

Bit 15, Timer OK/limit exceeded

Bit $15=^{\prime} 0^{\prime}$: The timers for motor thermal protection and thermal protection are not exceeded 100%.
Bit $15==^{\prime} 1$: One of the timers exceeds 100%.
If the connection between the Interbus option and the frequency converter is lost, or an internal communication problem has occurred, all bits in the STW are set to ' 0 .'

7.11.3 Bus Speed Reference Value

Speed reference value is transmitted to the frequency converter in a relative value in $\%$. The value is transmitted in the form of a 16-bit word; in integers ($0-32767$) the value 16384 (4000 Hex) corresponds to 100%. Negative figures are formatted with 2's complement. The Actual Output frequency (MAV) is scaled in the same way as the bus reference.

Illustration 7.18 Bus Speed Reference Value

The reference and MAV are scaled as showed in Illustration 7.19.

Illustration 7.19 Reference and MAV

General Specifications and ...

8 General Specifications and Troubleshooting

8.1 General Specifications

8.1.1 Mains Supply $3 \times 380-480$ V AC

	N110		N132		N160		N200		N250		N315	
High/normal load*	HO	NO										
Typical shaft output at 400 V [kW]	90	110	110	132	132	160	160	200	200	250	250	315
Typical shaft output at 460 V [hp]	125	150	150	200	200	250	250	300	300	350	350	450
Enclosure IP20	D3h						D4h					
Enclosure IP21/IP 54	D1h						D2h					
Output current												
Continuous (at 3x380-440 V) [A]	177	212	212	260	260	315	315	395	395	480	480	588
Intermittent (at 3x380-440 V) [A]	266	233	318	286	390	347	473	435	593	528	720	647
Continuous (at 3x441-480 V) [A]	160	190	190	240	240	302	302	361	361	443	443	535
Intermittent (at 3x441-480 V) [A]	240	209	285	264	360	332	453	397	542	487	665	588
Continuous kVA (at $400 \mathrm{~V} \mathrm{AC)} \mathrm{[kVA]}$	123	147	147	180	180	218	218	274	274	333	333	407
Continuous kVA (at 460 V AC) [kVA]	127	151	151	191	191	241	241	288	288	353	353	426
Max. input current												
Continuous ($3 \times 380-440 \mathrm{~V}$) [A]	171	204	204	251	251	304	304	381	381	463	463	567
Continuous ($3 \times 441-480 \mathrm{~V}$) [A]	154	183	183	231	231	291	291	348	348	427	427	516
Max. pre-fuses ${ }^{1)}$ [A]	315		350		400		550		630		800	
Max. cable size												
Motor ($\left.\mathrm{mm}^{2} / \mathrm{AWG}^{2}\right)^{5}$)	2×95 (2x3/0)						2x185 (2x350 mcm)					
Mains ($\mathrm{mm}^{2} / \mathrm{AWG}^{2)}{ }^{5}$)												
Loadshare ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}{ }^{5}$) $)$												
Brake ($\left.\mathrm{mm}^{2} / \mathrm{AWG}^{2)}{ }^{5}\right)$)												
Estimated power loss at 400 V AC at rated max load [W] ${ }^{3)}$	2031	2559	2289	2954	2923	3770	3093	4116	4039	5137	5005	6674
Estimated power loss at 460 V AC at rated max load [W] ${ }^{3)}$	1828	2261	2051	2724	2089	3628	2872	3569	3575	4566	4458	5714
Weight, enclosure IP00/IP20, kg [lbs.]	62 [135]						125 [275]					
Weight, enclosure IP21, kg [lbs.]												
Weight, enclosure IP54, kg [lbs.]												
Efficiency ${ }^{4}$	0.98											
Output frequency [Hz]	0-590											
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	110											
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	75											

Table 8.1 Technical Specifications, D1h-D4h, Mains Supply $3 \times 380-480$ V AC

General Specifications and ... Design Guide

	P355		P400		P450	
High/normal load*	HO	NO	HO	NO	HO	NO
Typical shaft output at 400 V [kW]	315	355	355	400	400	450
Typical shaft output at 460 V [hp]	450	500	500	600	550	600
Enclosure IP00						
Enclosure IP21/IP54						
Output current						
Continuous (at 3x380-440 V) [A]	600	658	658	745	695	800
Intermittent (at $3 \times 380-440 \mathrm{~V}$) [A]	900	724	987	820	1043	880
Continuous (at 3x441-480 V) [A]	540	590	590	678	678	730
Intermittent (at 3x441-480 V) [A]	810	649	885	746	1017	803
Continuous kVA (at $400 \mathrm{~V} \mathrm{AC)} \mathrm{[kVA]}$	416	456	456	516	482	554
Continuous kVA (at 460 V AC) [kVA]	430	470	470	540	540	582
Max. input current						
Continuous ($3 \times 380-440 \mathrm{~V}$) [A]	590	647	647	733	684	787
Continuous ($3 \times 441-480 \mathrm{~V}$) [A]	531	580	580	667	667	718
Max. pre-fuses ${ }^{1)}$ [A]						
Max. cable size						
Motor ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	4×240 ($4 \times 500 \mathrm{mcm}$)					
Mains ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	4×240 ($4 \times 500 \mathrm{mcm}$)					
Loadshare ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	4×240 ($4 \times 500 \mathrm{mcm}$)					
Brake ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	2×185 ($2 \times 350 \mathrm{mcm}$)					
Estimated power loss at 400 V AC at rated max load [W] ${ }^{3)}$	6794	7532	7498	8677	7976	9473
Estimated power loss at 460 V AC at rated max load [W] ${ }^{3)}$	6118	6724	6672	7819	7814	8527
Weight, enclosure IP00, kg [lbs.]	236 [520]		236 [520]		277 [611]	
Weight, enclosure IP21/IP 54, kg [lbs.]	272 [600]		272 [600]		313 [690]	
Efficiency ${ }^{4}$	0.98					
Output frequency [Hz]	0-590					
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	110					
Power card ambient trip [${ }^{\mathrm{C}}$]	85					
*High overload=150\% current for 60 s , Normal overload=110\% current for 60 s						

Table 8.2 Technical Specifications, E1/E2, Mains Supply 3x380-480 V AC

General Specifications and ...

	P500		P560		P630		P710		P800		P1M0	
High/normal load*	HO	NO										
Typical shaft output at 400 V [kW]	450	500	500	560	560	630	630	710	710	800	800	1000
Typical shaft output at 460 V [hp]	600	650	650	750	750	900	900	1000	1000	1200	1200	1350
Enclosure IP21/IP54 with or without options cabinet	F1/F3								F2/F4			
Output current												
Continuous (at 3x380-440 V) [A]	800	880	880	990	990	1120	1120	1260	1260	1460	1460	1720
Intermittent (at 3x380-440 V) [A]	1200	968	1320	1089	1485	1232	1680	1386	1890	1606	2190	1892
Continuous (at 3x441-480 V) [A]	730	780	780	890	890	1050	1050	1160	1160	1380	1380	1530
Intermittent (at 3x441-480 V) [A]	1095	858	1170	979	1335	1155	1575	1276	1740	1518	2070	1683
Continuous kVA (at $400 \mathrm{~V} \mathrm{AC)} \mathrm{[kVA]}$	554	610	610	686	686	776	776	873	873	1012	1012	1192
Continuous kVA (at 460 V AC) [kVA]	582	621	621	709	709	837	837	924	924	1100	1100	1219

Max. input current

Continuous (3x380-440 V) [A]	779	857	857	964	964	1090	1090	1227	1227	1422	1422	1675
Continuous (3x441-480 V) [A]	711	759	759	867	867	1022	1022	1129	1129	1344	1344	1490
Max. pre-fuses ${ }^{1 /}$ [A]	1600				2000				2500			

Max. cable size

Motor ($\left.\left.\mathrm{mm}^{2} / \mathrm{AWG}^{2}\right)^{5}\right)$	8×150 (8x300 mcm)								12×150 (12x300 mcm)			
Mains, F1/F2 ($\mathrm{mm}^{2} / \mathrm{AWG}^{2)}{ }^{5}$)	8×240 ($8 \times 500 \mathrm{mcm}$)											
Mains, F3/F4 ($\left.\mathrm{mm}^{2} / \mathrm{AWG}^{2)}{ }^{5}\right)$	8×456 (8x900 mcm)											
Loadshare ($\mathrm{mm}^{2} / \mathrm{AWG}^{2)}{ }^{5}$)	4×120 ($4 \times 250 \mathrm{mcm}$)											
Brake ($\left.\mathrm{mm}^{2} / \mathrm{AWG}^{2}{ }^{5}\right)$)	4x185 (4×350 mcm)								6x185 (6x350 mcm)			
Estimated power loss at 400 V AC at rated max load [W] ${ }^{3)}$	9031	10162	10146	11822	10649	12512	12490	14674	14244	17293	15466	19278
Estimated power loss at 460 V AC at rated max load [W] ${ }^{3)}$	8212	8876	8860	10424	9414	11595	11581	13213	13005	16229	14556	16624
Max. added losses A1 RFI, CB or disconnect, and contactor, F3/F4	893	963	951	1054	978	1093	1092	1230	2067	2280	2236	2541
Max. panel options losses	400											
Weight, enclosure IP2, kg [lbs.]	1017/1318 [2242/2905]								1260/1561 [2778/3441]			
Weight, enclosure IP54, kg [lbs.]												
Weight, rectifier module, kg [lbs.]	102 [224]		102 [224]		102 [224]		102 [224]		136 [299]		136 [299]	
Weight, inverter module, kg [lbs.]	102 [224]		102 [224]		102 [224]		136 [299]		102 [224]		102 [224]	
Efficiency ${ }^{\text {4 }}$	0.98											
Output frequency [Hz]	0-590											
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	95											
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	75											
*High overload=150\% current for 60 s , Normal overload=110\% current for 60 s												

Table 8.3 Technical Specifications, F1-F4, Mains Supply 3x380-480 V AC

1) For type of fuse, consult the Operating Instructions.
2) American Wire Gauge.
3) The typical power loss is at normal conditions and expected to be within $\pm 15 \%$ (tolerance relates to variety in voltage and cable conditions.) These values are based on a typical motor efficiency (IE2/IE3 border line). Lower efficiency motors add to the power loss in the frequency converter and the opposite is also true. If the switching frequency is raised from nominal, the power losses rise significantly. LCP and typical control card power consumptions are included. Further options and customer load can add up to 30 W to the losses (though typically only 4 W extra for a fully loaded control card or options for slot A or slot B, each).
4) Measured using 5 m screened motor cables at rated load and rated frequency.
5) Wiring terminals on N132, N160, and N315 frequency converters cannot receive cables one size larger.

General Specifications and ...

8.1.2 Mains Supply $3 \times 525-690$ V AC

	N75K		N90K		N110K		N132		N160	
High/normal load*	HO	NO								
Typical shaft output at 550 V [kW]	45	55	55	75	75	90	90	110	110	132
Typical shaft output at 575 V [hp]	60	75	75	100	100	125	125	150	150	200
Typical shaft ouptut at 690 V [kW]	55	75	75	90	90	110	110	132	132	160
Enclosure IP20	D3h									
Enclosure IP21/IP54	D1h									
Output current										
Continuous (at 550 V) [A]	76	90	90	113	113	137	137	162	162	201
Intermittent (60 s overload) (at 550 V) [A]	122	99	135	124	170	151	206	178	243	221
Continuous (at 575/690 V) [A]	73	86	86	108	108	131	131	155	155	192
Intermittent (60 s overload) (at 575/690 V) [kVA]	117	95	129	119	162	144	197	171	233	211
Continuous kVA (at 550 V) [kVA]	72	86	86	108	108	131	131	154	154	191
Continuous kVA (at 575 V) [kVA]	73	86	86	108	108	130	130	154	154	191
Continuous kVA (at 690 V) [kVA]	87	103	103	129	129	157	157	185	185	229
Max. input current										
Continuous (at 550 V) [A]	77	89	89	110	110	130	130	158	158	198
Continuous (at 575 V) [A]	74	85	85	106	106	124	124	151	151	189
Continuous (at 690 V) [A]	77	87	87	109	109	128	128	155	155	197

Max. cable size										
Mains, motor, brake, and load share ($\mathrm{mm}^{2} / \mathrm{AWG}^{2)}$)	2×95 (2x3/0)									
Max. external mains fuses [A]	160		315							
Estimated power loss at $575 \mathrm{~V}[\mathrm{~W}]^{3)}$	1098	1162	1162	1428	1430	1740	1742	2101	2080	2649
Estimated power loss at $690 \mathrm{~V}[\mathrm{~W}]^{3)}$	1057	1204	1205	1477	1480	1798	1800	2167	2159	2740
Weight, enclosure IP20, kg [lbs.]	125 [275]									
Weight, enclosures IP21/ IP54, kg [lbs.]	62 [135]									
Efficiency ${ }^{4}$	0.98									
Output frequency [Hz]	0-590									
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	110									
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	75									

Table 8.4 Technical Specifications, D1h/D3h, Mains Supply 3x525-690 V AC

General Specifications and ...

	N200		N250		N315		P400	
High/normal load*	HO	NO	HO	NO	HO	NO	HO	NO
Typical shaft output at 550 V [kW]	132	160	160	200	200	250	250	315
Typical shaft output at 575 V [hp]	200	250	250	300	300	350	350	400
Typical shaft output at 690 V [kW]	160	200	200	250	250	315	315	400
Enclosure IP20	D4h							
Enclosure IP21/IP54	D2h							
Output current								
Continuous (at 550 V) [A]	201	253	253	303	303	360	360	418
Intermittent (60 s overload) (at 550 V)[A]	302	278	380	333	455	396	540	460
Continuous (at 575/690 V) [A]	192	242	242	290	290	344	344	400
Intermittent (60 s overload) (at 575/690 V) [kVA]	288	266	363	319	435	378	516	440
Continuous kVA (at 550 V) [kVA]	191	241	241	289	289	343	343	398
Continuous kVA (at 575 V) [kVA]	191	241	241	289	289	343	343	398
Continuous kVA (at 690 V) [kVA]	229	289	289	347	347	411	411	478
Max. input current								
Continuous (at 550 V) [A]	198	245	245	299	299	355	355	408
Continuous (at 575 V) [A]	189	234	234	286	286	339	339	390
Continuous (at 690 V) [A]	197	240	240	296	296	352	352	400
Max. cable size								
Mains, motor, brake, and load share (mm^{2} / AWG ${ }^{2)}$)	2x185 (2x350 mcm)							
Max. external mains fuses [A]	550							
Estimated power loss at 575 V [W] ${ }^{3)}$	2361	3074	3012	3723	3642	4465	4146	5028
Estimated power loss at $690 \mathrm{~V}[\mathrm{~W}]^{3)}$	2446	3175	3123	3851	3771	4614	4258	5155
Weight, enclosure, IP20/IP21/IP54, kg [lbs.]	125 [275]							
Efficiency ${ }^{4}$	0.98							
Output frequency [Hz]	0-590						0-525	
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	110							
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	80							
*High overload=150\% current for 60 s , Normal overload=110\% current for 60 s .								

Table 8.5 Technical Specifications, D2h/D4h, Mains Supply 3x525-690 V AC

General Specifications and ... Design Guide

	P450	
High/normal load*	HO	NO
Typical shaft output at 550 V [kW]	315	355
Typical shaft output at 575 V [hp]	400	450
Typical shaft output at 690 V [kW]	355	450
Enclosure IP00		
Enclosure IP21/IP54		
Output current		
Continuous (at 550 V) [A]	395	470
Intermittent (60 s overload) (at 550 V)[A]	593	517
Continuous (at 575/690 V) [A]	380	450
Intermittent (60 s overload) (at 575/690 V) [kVA]	570	495
Continuous kVA (at 550 V) [kVA]	376	448
Continuous kVA (at 575 V) [kVA]	378	448
Continuous kVA (at 690 V) [kVA]	454	538
Max. input current		
Continuous (at 550 V) [A]	381	453
Continuous (at 575 V) [A]	366	434
Continuous (at 690 V) [A]	366	434
Max. cable size		
Mains, motor, and load share ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	4×240 ($4 \times 500 \mathrm{mcm}$)	
Brake (mm ${ }^{2}$ / AWG ${ }^{2}$)	2x185 ($2 \times 350 \mathrm{mcm}$)	
Max. external mains fuses [A]	700	
Estimated power loss at $575 \mathrm{~V}[\mathrm{~W}]^{3)}$	4424	5323
Estimated power loss at $690 \mathrm{~V}[\mathrm{~W}]^{3)}$	4589	5529
Weight, enclosure, IP00, kg [lbs.]	221 [487]	
Weight, enclosure, IP21/IP54, kg [lbs.]	263 [579]	
Efficiency ${ }^{\text {4 }}$	0.98	
Output frequency [Hz]	0-525	
Heatsink overtemp. trip [$\left.{ }^{\circ} \mathrm{C}\right]$	110	
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	80	
*High overload=150\% current for 60 s , Normal overload=110\% current for 60 s .		

Table 8.6 Technical Specifications, E1/E2, Mains Supply $3 \times 525-690$ V AC

General Specifications and ... Design Guide

	P500		P560		P630	
High/normal load*	HO	NO	HO	NO	HO	NO
Typical shaft output at 550 V [kW]	315	400	400	450	450	500
Typical shaft output at 575 V [hp]	400	500	500	600	600	650
Typical shaft output at 690 V [kW]	400	500	500	560	560	630
Enclosure IP00						
Enclosure IP21/IP54						
Output current						
Continuous (at 550 V) [A]	429	523	523	596	596	630
Intermittent (60 s overload) (at 550 V)[A]	644	575	785	656	894	693
Continuous (at 575/690 V) [A]	410	500	500	570	570	630
Intermittent (60 s overload) (at 575/690 V) [kVA]	615	550	750	627	855	693
Continuous kVA (at 550 V) [kVA]	409	498	498	568	568	600
Continuous kVA (at 575 V) [kVA]	408	498	498	568	568	627
Continuous kVA (at 690 V) [kVA]	490	598	598	681	681	753
Max. input current						
Continuous (at 550 V) [A]	413	504	504	574	574	607
Continuous (at 575 V) [A]	395	482	482	549	549	607
Continuous (at 690 V) [A]	395	482	482	549	549	607
Max. cable size						
Mains, motor, and load share ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	4×240 ($4 \times 500 \mathrm{mcm}$)					
Brake (mm ${ }^{2}$ / AWG ${ }^{2}$)	2x185 (2x350 mcm)					
Max. external mains fuses [A]	700		900			
Estimated power loss at $575 \mathrm{~V}[\mathrm{~W}]^{3)}$	4795	6010	6493	7395	7383	8209
Estimated power loss at $690 \mathrm{~V}[\mathrm{~W}]^{3)}$	4970	6239	6707	7653	7633	8495
Weight, enclosure, IP00, kg [lbs.]	221 [487]		236 [520]		277 [611]	
Weight, enclosure, IP21/IP54, kg [lbs.]	263 [580]		272 [600]		313 [690]	
Efficiency ${ }^{4}$	0.98					
Output frequency [Hz]	0-525					
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	95				110	
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	80				85	
*High overload=150\% current for 60 s , Normal overload=110\% current for 60 s .						

Table 8.7 Technical Specifications, E1/E2, Mains Supply $3 \times 525-690$ V AC

General Specifications and ... Design Guide

	P710		P800		P900	
High/normal load*	HO	NO	HO	NO	HO	NO
Typical shaft output at 550 V [kW]	500	560	560	670	670	750
Typical shaft output at 575 V [hp]	650	750	750	950	950	1050
Typical shaft output at 690 V [kW]	630	710	710	800	800	900
Enclosure IP21/IP54 with/without options cabinet	F1/F3					
Output current						
Continuous (at 550 V) [A]	659	763	763	889	889	988
Intermittent (60 s overload) (at 550 V)[A]	989	839	1145	978	1334	1087
Continuous (at 575/690 V) [A]	630	730	730	850	850	945
Intermittent (60 s overload) (at 575/690 V) [kVA]	945	803	1095	935	1275	1040
Continuous kVA (at 550 V) [kVA]	628	727	727	847	847	941
Continuous kVA (at 575 V) [kVA]	627	727	727	847	847	941
Continuous kVA (at 690 V) [kVA]	753	872	872	1016	1016	1129

Max. input current

Continuous (at 550 V) $[\mathrm{A}]$	642	743	743	866	866	962
Continuous (at 575 V) A$]$	613	711	711	828	828	920
Continuous (at 690 V) $[\mathrm{A}]$	613	711	711	828	828	920

Max. cable size

Motor ($\mathrm{mm}^{2 /} / \mathrm{AWG}^{2)}$)	8×150 (8x300 mcm)					
Mains, F1 ($\mathrm{mm}^{2} / \mathrm{AWG}^{2)}$)	8×240 ($8 \times 500 \mathrm{mcm}$)					
Mains, F3 (mm²/AWG ${ }^{2}$)	8×456 ($8 \times 900 \mathrm{mcm}$)					
Loadshare ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	4×120 ($4 \times 250 \mathrm{mcm}$)					
Brake ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	4×185 ($4 \times 350 \mathrm{mcm}$)					
Max. external mains fuses [A]	1600					
Estimated power loss at $575 \mathrm{~V}[\mathrm{~W}]^{3)}$	8075	9500	9165	10872	10860	12316
Estimated power loss at $690 \mathrm{~V}[\mathrm{~W}]^{3)}$	8388	9863	9537	11304	11291	12798
Max. added losses CB or disconnect and contactor, F1/F3	342	427	419	532	519	615
Max. panel option losses	400					
Weight, enclosure IP21, kg [lbs.]	1017/1318 [2242/2905]					
Weight, enclosure IP54, kg [lbs.]						
Weight, rectifier module, kg [lbs.]	102 [224]					
Weight, inverter module, kg [lbs.]	102 [224]				136 [299]	
Efficiency ${ }^{\text {) }}$	0.98					
Output frequency [Hz]	0-500					
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	95		105		95	
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	85					
*High overload=150\% current for 60 s , Normal overload=110\% current for 60 s .						

Table 8.8 Technical Specifications, F1/F3, Mains Supply 3x525-690 V AC

General Specifications and ...

	P1M0		P1M2		P1M4	
High/normal load*	HO	NO	HO	NO	HO	NO
Typical shaft output at 550 V [kW]	750	850	850	1000	1000	1100
Typical shaft output at 575 V [hp]	1050	1150	1150	1350	1350	1550
Typical shaft output at 690 V [kW]	900	1000	1000	1200	1200	1400
Enclosure IP21/IP54 with/without options cabinet	F2/F4					
Output current						
Continuous (at 550 V) [A]	988	1108	1108	1317	1317	1479
Intermittent (60 s overload) (at 550 V)[A]	1482	1219	1662	1449	1976	1627
Continuous (at 575/690 V) [A]	945	1060	1060	1260	1260	1415
Intermittent (60 s overload) (at 575/690 V) [kVA]	1418	1166	1590	1386	1890	1557
Continuous kVA (at 550 V) [kVA]	941	1056	1056	1255	1255	1409
Continuous kVA (at 575 V) [kVA]	941	1056	1056	1255	1255	1409
Continuous kVA (at 690 V) [kVA]	1129	1267	1267	1506	1506	1691

Max. input current

Continuous (at 550 V) $[\mathrm{A}]$	962	1079	1079	1282	1282	1440
Continuous (at 575 V) A$]$	920	1032	1032	1227	1227	1378
Continuous (at 690 V) $[\mathrm{A}]$	920	1032	1032	1227	1227	1378

Max. cable size						
Motor (mm²/AWG ${ }^{2)}$)	12×150 (12x300 mcm)					
Mains, F2 ($\mathrm{mm}^{2} / \mathrm{AWG}^{2)}$)	8×240 ($8 \times 500 \mathrm{mcm}$)					
Mains, F4 ($\mathrm{mm}^{2} / \mathrm{AWG}^{2)}$)	8×456 ($8 \times 900 \mathrm{mcm}$)					
Loadshare ($\mathrm{mm}^{2} / \mathrm{AWG}^{2)}$)	4×120 ($4 \times 250 \mathrm{mcm}$)					
Brake ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	6×185 ($6 \times 350 \mathrm{mcm}$)					
Max. external mains fuses [A]	1600		2000		2500	
Estimated power loss at $575 \mathrm{~V}[\mathrm{~W}]^{3)}$	12062	13731	13269	16190	16089	18536
Estimated power loss at $690 \mathrm{~V}[\mathrm{~W}]^{3)}$	12524	14250	13801	16821	16719	19247
Max. added losses CB or disconnect and contactor, F2/F4	556	665	634	863	861	1044
Max. panel option losses	400					
Weight, enclosure IP21, kg [lbs.]	1260/1561 [2778/3441]				1294/1595 [2852/3516]	
Weight, enclosure IP54, kg [lbs.]						
Weight, rectifier module, kg [lbs.]	136 [299]					
Weight, inverter module, kg [lbs.]	102 [224]				136 [299]	
Efficiency ${ }^{4}$	0.98					
Output frequency [Hz]	0-500					
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	95		105		95	
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	85					
*High overload=150\% current for 60 s , Normal overload=110\% current for 60 s .						

Table 8.9 Technical Specifications, F2/F4, Mains Supply 3x525-690 V AC

1) For type of fuse, consult the Operating Instructions.
2) American Wire Gauge.
3) The typical power loss is at normal conditions and expected to be within $\pm 15 \%$ (tolerance relates to variety in voltage and cable conditions.) These values are based on a typical motor efficiency (IE2/IE3 border line). Lower efficiency motors add to the power loss in the frequency converter and the opposite is also true. If the switching frequency is raised from nominal, the power losses rise significantly. LCP and typical control card power consumptions are included. Further options and customer load can add up to 30 W to the losses (though typically only 4 W extra for a fully loaded control card or options for slot A or slot B, each).
4) Measured using 5 m screened motor cables at rated load and rated frequency.

General Specifications and ...

Design Guide

Frame size	Description	Maximum weight, kg [lbs.]
D5h	D1h ratings+disconnect and/or brake chopper	$166[255]$
D6h	D1h ratings+contactor and/or circuit breaker	$129[285]$
D7h	D2h ratings+disconnect and/or brake chopper	$200[440]$
D8h	D2h ratings+contactor and/or circuit breaker	$225[496]$

Table 8.10 D5h-D8h Weights

8.1.3 12-Pulse Specifications

	P315		P355		P400		P450	
High/normal load*	HO	NO	HO	NO	HO	NO	HO	NO
Typical shaft output at 400 V [kW]	250	315	315	355	355	400	400	450
Typical shaft output at 460 V [hp]	350	450	450	500	500	600	550	600
Enclosure IP21/IP54	F8/F9							
Output current								
Continuous (at 400 V) [A]	480	600	600	658	658	745	695	800
Intermittent, 60 s overload (at 400 V) [A]	720	660	900	724	987	820	1043	880
Continuous (at 460/480 V) [A]	443	540	540	590	590	678	678	730
Intermittent, 60 s overload (at 460/480 V) [A]	665	594	810	649	885	746	1017	803
Continuous kVA (at $400 \mathrm{~V} \mathrm{AC)} \mathrm{[kVA]}$	333	416	416	456	456	516	482	554
Continuous kVA (at 460 V AC) [kVA]	353	430	430	470	470	540	540	582
Max. input current								
Continuous (400 V) [A]	472	590	590	647	647	733	684	787
Continuous (460/480 V) [A]	436	531	531	580	580	667	667	718
Max. external main fuses ${ }^{1 /}$ [A]								
Max. cable size								
Motor (mm ${ }^{2} /$ AWG $\left.^{2)}{ }^{5}\right)$	4×240 (4×500 mcm)							
Mains ($\left.\mathrm{mm}^{2} / \mathrm{AWG}^{2)}{ }^{5}\right)$	4x90 (3/0)				4×240 (500 mcm)			
Brake ($\left.\mathrm{mm}^{2} / \mathrm{AWG}^{2}\right)^{5}$)	2x185 ($2 \times 350 \mathrm{mcm}$)							
Estimated power loss at 400 V AC at rated max load [W] ${ }^{3)}$	5164	6790	6960	7701	7691	8879	8178	9670
Estimated power loss at 460 V AC at rated max load [W] ${ }^{3)}$	4822	6082	6345	6953	6944	8089	8085	8803
Weight, enclosure IP21, kg [lbs.]	447/669 [986/1475]							
Weight, enclosure IP54, kg [lbs.]								
Efficiency ${ }^{4}$	0.98							
Output frequency [Hz]	0-590							
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	110							
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	85							
*High overload= 150% current for 60 s , Normal overload=110\% current for 60 s								

Table 8.11 Technical Specifications F8/F9 12-Pulse, Mains Supply 6x380-480 V AC

General Specifications and ... Design Guide

	P500		P560		P630		P710		P800		P1M0	
High/normal load*	HO	NO										
Typical shaft output at 400 V [kW]	450	500	500	560	560	630	630	710	710	800	800	1000
Typical shaft output at 460 V [hp]	600	650	650	750	750	900	900	1000	1000	1200	1200	1350
Enclosure IP21, IP54 without/with options cabinet					F11							
Output current												
Continuous (at 400 V) [A]	800	880	880	990	990	1120	1120	1260	1260	1460	1460	1720
Intermittent, 60 s overload (at 400 V) [A]	1200	968	1320	1089	1485	1232	1680	1386	1890	1606	2190	1892
Continuous (at 460/480 V) [A]	730	780	780	890	890	1050	1050	1160	1160	1380	1380	1530
Intermittent, 60 s overload (at 460/480 V) [A]	1095	858	1170	979	1335	1155	1575	1276	1740	1518	2070	1683
Continuous kVA (at $400 \mathrm{~V} \mathrm{AC)} \mathrm{[kVA]}$	554	610	610	686	686	776	776	873	873	1012	1012	1192
Continuous kVA (at 460 V AC) [kVA]	582	621	621	709	709	837	837	924	924	1100	1100	1219
Max. input current												
Continuous (400 V) [A]	779	857	857	964	964	1090	1090	1227	1227	1422	1422	1675
Continuous (460/480 V) [A]	711	759	759	867	867	1022	1022	1129	1129	1344	1344	1490
	900								1500			
Max. cable size												
Motor ($\mathrm{mm}^{2 /} \mathrm{AWGG}^{2)}{ }^{51}$)	8×150 (8x300 mcm)								12x150 (12x300 mcm)			
Mains ($\mathrm{mm}^{2} / \mathrm{AWG}^{2)}{ }^{5)}$)	6×120 ($6 \times 250 \mathrm{mcm}$)											
Brake (mm²/AWG ${ }^{2)}$)) Estimated power loss at 400 V AC at rated max load [W] ${ }^{3)}$	4x185 ($4 \times 350 \mathrm{mcm}$)								6x185 (6x350 mcm)			
	9492	10647	10631	12338	11263	13201	13172	15436	14967	18084	16392	20358
Estimated power loss at 460 V AC at rated max load [W] ${ }^{3)}$	8730	9414	9398	11006	10063	12353	12332	14041	13819	17137	15577	17752
F10/F11/F12/F13 max. added losses A1 RFI, CB or disconnect, and contactor	893	963	951	1054	978	1093	1092	1230	2067	2280	2236	2541
Max. panel options losses	400											
Weight, enclosure IP21, kg [lbs.]	1017/1319 [2242/2908]								1260/1561 [2778/3441]			
Weight, enclosure IP54, kg [lbs.]												
Weight, rectifier module, kg [lbs.]	102 [225]									136	300]	
Weight, inverter module, kg [lbs.]	102 [225]						136 [300]		102 [225]			
Efficiency ${ }^{4}$	0.98											
Output frequency [Hz]	0-590											
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	95											
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	85											
*High overload=150\% current for 60 s , Normal overload=110\% current for 60 s												

Table 8.12 Technical Specifications F10-F13 12-Pulse, Mains Supply 6x380-480 V AC
General Specifications and ... Design Guide

	P450		P500		P560		P630	
High/normal load*	HO	NO	HO	NO	HO	NO	HO	NO
Typical shaft output at 550 V [kW]	315	355	315	400	400	450	450	500
Typical shaft output at 575 V [hp]	400	450	400	500	500	600	600	650
Typical shaft output at 690 V [kW]	355	450	400	500	500	560	560	630
Enclosure IP21/IP54	F8/F9							
Output current								
Continuous (at 550 V) [A]	395	470	429	523	523	596	596	630
Intermittent (60 s overload) (at 550 V)[A]	593	517	644	575	785	656	894	693
Continuous (at 575/690 V) [A]	380	450	410	500	500	570	570	630
Intermittent (60 s overload) (at 575/690 V) [kVA]	570	495	615	550	750	627	855	693
Continuous kVA (at 550 V) [kVA]	376	448	409	498	498	568	568	600
Continuous kVA (at 575 V) [kVA]	378	448	408	498	598	568	568	627
Continuous kVA (at 690 V) [kVA]	454	538	490	598	598	681	681	753
Max. input current								
Continuous (at 550 V) [A]	381	453	413	504	504	574	574	607
Continuous (at 575 V) [A]	366	434	395	482	482	549	549	607
Continuous (at 690 V) [A]	366	434	395	482	482	549	549	607
Max. cable size								
Mains ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	4×85 (3/0)							
Motor ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	4×250 ($4 \times 500 \mathrm{mcm}$)							
Brake (mm ${ }^{2} / \mathrm{AWG}^{2}$)	2×185 ($2 \times 350 \mathrm{mcm}$)							
Max. external mains fuses [A]	630							
Estimated power loss at $600 \mathrm{~V}[\mathrm{~W}]^{3)}$	4424	5323	4795	6010	6493	7395	7383	8209
Estimated power loss at $690 \mathrm{~V}[\mathrm{~W}]^{3)}$	4589	5529	4970	6239	6707	7653	7633	8495
Weight, enclosure IP21, kg [lbs.]	447/669 [985/1475]							
Weight, enclosure IP54, kg [lbs.]								
Efficiency ${ }^{4}$	0.98							
Output frequency [Hz]	0-500							
Heatsink overtemp. trip [$\left.{ }^{\circ} \mathrm{C}\right]$	110							
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	85							
*High overload=150\% current for 60 s , Normal overload=110\% current for 60 s .								

Table 8.13 Technical Specifications F8/F9 12-Pulse, Mains Supply 6x525-690 V AC

General Specifications and ... Design Guide

	P710		P800		P900	
High/normal load*	HO	NO	HO	NO	HO	NO
Typical shaft output at 550 V [kW]	500	560	560	670	670	750
Typical shaft output at 575 V [hp]	650	750	750	950	950	1050
Typical shaft output at 690 V [kW]	630	710	710	800	800	900
Enclosure IP21, IP54 without/with options cabinet	F10/F11					
Output current						
Continuous (at 550 V) [A]	659	763	763	889	889	988
Intermittent (60 s overload) (at 550 V)[A]	989	839	1145	978	1334	1087
Continuous (at 575/690 V) [A]	630	730	730	850	850	945
Intermittent (60 s overload) (at 575/690 V) [kVA]	945	803	1095	935	1275	1040
Continuous kVA (at 550 V) [kVA]	628	727	727	847	847	941
Continuous kVA (at 575 V) [kVA]	627	727	727	847	847	941
Continuous kVA (at 690 V) [kVA]	753	872	872	1016	1016	1129

Max. input current

Continuous (at 550 V) $[\mathrm{A}]$	642	743	743	866	866	962
Continuous (at 575 V [A]	613	711	711	828	828	920
Continuous (at 690 V) $[\mathrm{A}]$	613	711	711	828	828	920

Max. cable size

Mains ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	$8 \times 150(8 \times 300 \mathrm{mcm})$					
Motor ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	6×120 ($6 \times 250 \mathrm{mcm}$)					
Brake (mm^{2} / AWG ${ }^{2}$)	4×185 ($4 \times 350 \mathrm{mcm}$)					
Max. external mains fuses [A]	900					
Estimated power loss at $600 \mathrm{~V}[\mathrm{~W}]^{3)}$	8075	9500	9165	10872	10860	12316
Estimated power loss at $690 \mathrm{~V}[\mathrm{~W}]^{3)}$	8388	9863	9537	11304	11291	12798
F10/F11 max. added losses A1 RFI or disconnect	342	427	419	532	519	615
Max. panel options losses	400					
Weight, enclosure IP21, kg [lbs.]	1017/1319 [2242/2908]					
Weight, enclosure IP54, kg [lbs.]						
Weight, rectifier module, kg [lbs.]	102 [225]					
Weight, inverter module, kg [lbs.]	102 [225]				136 [300]	
Efficiency ${ }^{4}$	0.98					
Output frequency [Hz]	0-500					
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	95		105		95	
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	85					
*High overload $=150 \%$ current for 60 s , Normal overload $=110 \%$ current for 60 s .						

Table 8.14 Technical Specifications F10/F11 12-Pulse, Mains Supply 6x525-690 V AC

General Specifications and ... Design Guide

	P1M0		P1M2		P1M4	
High/normal load*	HO	NO	HO	NO	HO	NO
Typical shaft output at 550 V [kW]	750	850	850	1000	1000	1100
Typical shaft output at 575 V [hp]	1050	1150	1150	1350	1350	1550
Typical shaft output at 690 V [kW]	900	1000	1000	1200	1200	1400
Enclosure IP21, IP54 without/with options cabinet	F12/F13					
Output current						
Continuous (at 550 V) [A]	988	1108	1108	1317	1317	1479
Intermittent (60 s overload) (at 550 V)[A]	1482	1219	1662	1449	1976	1627
Continuous (at 575/690 V) [A]	945	1060	1060	1260	1260	1415
Intermittent (60 s overload) (at 575/690 V) [kVA]	1418	1166	1590	1386	1890	1557
Continuous kVA (at 550 V) [kVA]	941	1056	1056	1255	1255	1409
Continuous kVA (at 575 V) [kVA]	941	1056	1056	1255	1255	1409
Continuous kVA (at 690 V) [kVA]	1129	1267	1267	1506	1506	1691
Max. input current						
Continuous (at 550 V) [A]	962	1079	1079	1282	1282	1440
Continuous (at 575 V) [A]	920	1032	1032	1227	1227	1378
Continuous (at 690 V) [A]	920	1032	1032	1227	1227	1378
Max. cable size						
Mains (mm ${ }^{2} /$ AWG 2)	$12 \times 150(12 \times 300 \mathrm{mcm})$					
Motor ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	8×400 (8x900 mcm)					
Brake ($\mathrm{mm}^{2} / \mathrm{AWG}^{2}$)	6×185 (6x350 mcm)					
Max. external mains fuses [A]	1600		2000		2500	
Estimated power loss at $600 \mathrm{~V}[\mathrm{~W}]^{3)}$	12062	13731	13269	16190	16089	18536
Estimated power loss at $690 \mathrm{~V}[\mathrm{~W}]^{3)}$	12524	14250	13801	16821	16719	19247
F12/F13 max. added losses A1 RFI or disconnect	556	665	634	863	861	1044
Max. panel options losses	400					
Weight, enclosure IP21, kg [lbs.]	1260/1561 [2778/3441]				1294/1595 [2853/3516]	
Weight, enclosure IP54, kg [lbs.]						
Weight, rectifier module, kg [lbs.]	136 [300]					
Weight, inverter module, kg [lbs.]	102 [225]				136 [300]	
Efficiency ${ }^{4}$	0.98					
Output frequency [Hz]	0-500					
Heatsink overtemp. trip [${ }^{\circ} \mathrm{C}$]	95		105		95	
Power card ambient trip [${ }^{\circ} \mathrm{C}$]	85					
*High overload $=150 \%$ current for 60 s , Normal overload=110\% current for 60 s .						

Table 8.15 Technical Specifications F12/F13 12-Pulse, Mains Supply 6x525-690 V AC

1) For type of fuse, consult the Operating Instructions
2) American Wire Gauge
3) The typical power loss is at normal conditions and expected to be within $\pm 15 \%$ (tolerance relates to variety in voltage and cable conditions.) These values are based on a typical motor efficiency (eff2/eff3 border line). Lower efficiency motors add to the power loss in the frequency converter and the opposite is also true. If the switching frequency is raised from nominal, the power losses rise significantly. LCP and typical control card power consumptions are included. Further options and customer load can add up to 30 W to the losses (though typically only 4 W extra for a fully loaded control card or options for slot A or slot B, each)
4) Measured using 5 m screened motor cables at rated load and rated frequency

Protection and Features

- Electronic thermal motor protection against overload.
- Temperature monitoring of the heatsink ensures that the frequency converter trips when the temperature reaches $95^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$. An overload temperature cannot be reset until the temperature of the heatsink is below $70^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ (Guideline - these temperatures vary for different power sizes and enclosures). The frequency converter has an auto derating function to prevent its heatsink reaching $95^{\circ} \mathrm{C}$.
- The frequency converter is protected against short-circuits on motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.
- If a mains phase is missing, the frequency converter trips or issues a warning (depending on the load).
- Monitoring of the intermediate circuit voltage ensures that the frequency converter trips if the intermediate circuit voltage is too low or high.
- The frequency converter is protected against ground faults on motor terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$.

Mains supply
Supply terminals (6-pulse)
Supply terminals (12-pulse)
Supply voltage
Supply voltage
Supply voltage

Mains voltage low/mains drop-out:
During low mains voltage or a mains drop-out, the frequency converter continues until the intermediate circuit voltage drops
below the minimum stop level, which corresponds typically to 15\% below the lowest rated supply voltage. Power-up and full
torque cannot be expected at mains voltage lower than 10\% below the lowest rated supply voltage.

Supply frequency $\quad 50 / 60 \mathrm{~Hz}+4 /-6 \%$
The frequency converter power supply is tested in accordance with IEC61000-4-28, $50 \mathrm{~Hz}+4 /-6 \%$.
Max. imbalance temporary between mains phases 3.0% of rated supply voltage
True Power Factor (λ)
Displacement power factor ($\cos \varphi$) near unity
(> 0.98)
Switching on input supply L1, L2, L3 (power-ups) \geq enclosure type D, E, F maximum 1 time $/ 2 \mathrm{~min}$.
Environment according to EN60664-1 overvoltage category III/pollution degree 2
The unit is suitable for use on a circuit capable of delivering not more than 100.000 RMS symmetrical Amperes, $480 / 600 \mathrm{~V}$ maximum.

Motor output (U, V, W)
Output voltage
Output frequency
Switching on output
Ramp times

Torque characteristics
Starting torque (constant torque) maximum 110% for 1 minute ${ }^{1)}$
Starting torque maximum 135% up to $0.5 \mathrm{~s}^{1)}$

Overload torque (constant torque)

1) Percentage relates to nominal torque.

Cable lengths and cross sections
Max. motor cable length, screened/armoured
Max. motor cable length, unscreened/unarmoured
Max. cross section to motor, mains, load sharing, and brake *
Maximum cross section to control terminals, rigid wire
Maximum cross section to control terminals, flexible cable
Maximum cross section to control terminals, cable with enclosed core
Minimum cross section to control terminals

* See chapter 8.1 General Specifications for more information.

Control card, RS-485 serial communication
Terminal number
68 (P,TX+, RX+), 69 (N,TX-, RX-)
Terminal number 61
Common for terminals 68 and 69
The RS-485 serial communication circuit is functionally seated from other central circuits and galvanically isolated from the supply voltage (PELV).

Analogue inputs
Number of analogue inputs 2
Terminal number \triangle 53, 54

Modes	Voltage or current
Mode select	Switch S201 and switch S202
Voltage mode	Switch S201/switch S202 O OFF (U)
Voltage level	0 to +10 V (scaleable)
Input resistance, R_{i}	approx. $10 \mathrm{k} \Omega$
Max. voltage	$\pm 20 \mathrm{~V}$
Current mode	Switch S201/switch S202 = ON (I)
Current level	$0 / 4$ to 20 mA (scaleable)
Input resistance, R_{i}	approx. 200Ω
Max. current	30 mA
Resolution for analog inputs	10 bit (+ sign)
Accuracy of analog inputs	Max. error 0.5% of full scale
Bandwidth	200 Hz

The analogue inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

Illustration 8.1 PELV Isolation of Analogue Inputs

Analogue output
Number of programmable analogue outputs 1
Terminal number \quad max
Current range at analogue output 0/4-20 mA
Max. resistor load to common at analogue output 500Ω
Accuracy on analogue output Max. error: 0.8% of full scale
Resolution on analogue output 8 bit

The analogue output is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

General Specifications and ...
Digital inputs
Programmable digital inputs
Terminal number
Logic
Voltage level
Voltage level, logic'0' PNP
Voltage level, logic'1' PNP
Voltage level, logic ' 1 ' NPN
Voltage level, logic '1' NPN
Maximum voltage on input
Input resistance, R_{i}
All digital inputs are galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.

1) Terminals 27 and 29 can also be programmed as output.
Digital output
Programmable digital/pulse outputs
Terminal number
Voltage level at digital/frequency output
Max. output current (sink or source)
Max. load at frequency output
Max. capacitive load at frequency output
Minimum output frequency at frequency output
Maximum output frequency at frequency output
Accuracy of frequency output
Resolution of frequency outputs

The 24 V DC supply is galvanically isolated from the supply voltage (PELV), but has the same potential as the analogue and digital inputs and outputs.

Relay outputs

Programmable relay outputs 2
Relay 01 Terminal number 1 1-3 (break), 1-2 (make)
Max. terminal load (AC-1) 1 on 1-3 (NC), 1-2 (NO) (Resistive load) $240 \mathrm{~V} \mathrm{AC}, 2$ A

Max. terminal load (AC-15) ${ }^{1}$ (Inductive load @ $\cos \varphi 0.4$) $240 \mathrm{~V} \mathrm{AC}, 0.2 \mathrm{~A}$
Max. terminal load (DC-1) ${ }^{1)}$ on 1-2 (NO), 1-3 (NC) (Resistive load) 60 V DC, 1 A
Max. terminal load (DC-13) ${ }^{1)}$ (Inductive load) 24 V DC, 0.1 A
Relay 02 Terminal number
4-6 (break), 4-5 (make)
Max. terminal load (AC-1) ${ }^{1}$ on 4-5 (NO) (Resistive load) ${ }^{2 / 3)}$ $400 \mathrm{~V} \mathrm{AC}, 2 \mathrm{~A}$
Max. terminal load (AC-15) ${ }^{1)}$ on 4-5 (NO) (Inductive load @ $\cos \varphi$ 0.4) 240 V AC, 0.2 A
Max. terminal load (DC-1) ${ }^{1)}$ on 4-5 (NO) (Resistive load)
Max. terminal load (DC-13) ${ }^{1)}$ on 4-5 (NO) (Inductive load) 24 V DC, 0.1 A
Max. terminal load (AC-1) ${ }^{1}$ on 4-6 (NC) (Resistive load) 240 V AC, 2 A
Max. terminal load ($\mathrm{AC}-15)^{11}$ on 4-6 (NC) (Inductive load @ $\cos \varphi 0.4$) 240 V AC, 0.2 A
Max. terminal load (DC-1) ${ }^{1)}$ on 4-6 (NC) (Resistive load) 50 V DC, 2 A
Max. terminal load (DC-13) ${ }^{11}$ on 4-6 (NC) (Inductive load) 24 V DC, 0.1 A
Min. terminal load on 1-3 (NC), 1-2 (NO), 4-6 (NC), 4-5 (NO) 24 V DC $10 \mathrm{~mA}, 24$ V AC 20 mA
Environment according to EN 60664-1

1) IEC 60947 parts 4 and 5
The relay contacts are galvanically isolated from the rest of the circuit by reinforced isolation (PELV).
2) Overvoltage Category II
3) UL applications 300 V AC 2 A
Control card, 10 V DC output
Terminal number 50
Output voltage $10.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$
25 mA
The 10 V DC supply is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals.
Control characteristics
Resolution of output frequency at $0-590 \mathrm{~Hz}$ $\pm 0.003 \mathrm{~Hz}$
System response time (terminals 18, 19, 27, 29, 32, 33) $\leq 2 \mathrm{~ms}$
Speed control range (open loop)1:100 of synchronous speed
Speed accuracy (open loop)All control characteristics are based on a 4-pole asynchronous motor
Surroundings
Enclosure type D1h/D2h/E1/E2 IP00/chassis
Enclosure type D3h/D4h IP20/chassis
Enclosure type D1h/D2h, E1, F1-F4, F8-F13 IP21/Type 1, IP54/Type 12 1 g
Maximum relative humidity 5\%-95\% (IEC 721-3-3; Class 3K3 (non-condensing) during operation
Aggressive environment (IEC 721-3-3), coated class 3C3
Test method according to IEC 60068-2-43 H2S (10 days)
Ambient temperature (at 60 AVM switching mode) Max. $45^{\circ} \mathrm{C}$
Maximum ambient temperature with reduced load $55^{\circ} \mathrm{C}$
Derating for high ambient temperature, see chapter 8.5.5 Derating for Ambient Temperature
Minimum ambient temperature during full-scale operation $0^{\circ} \mathrm{C}$
Minimum ambient temperature at reduced performance $-10^{\circ} \mathrm{C}$
Temperature during storage/transport $-25-+65 / 70^{\circ} \mathrm{C}$
Maximum altitude above sea level without derating 1000 m
Maximum altitude above sea level with derating 3000 m
Derating for high altitude, see chapter 8.5 Special Conditions
EMC standards, EmissionEN 61800-3, EN 61000-6-3/4, EN 55011, IEC 61800-3EN 61800-3, EN 61000-6-1/2,
EMC standards, Immunity EN 61000-4-2, EN 61000-4-3, EN 61000-4-4, EN 61000-4-5, EN 61000-4-6
See chapter 8.5 Special Conditions for more information.
Control card performance
Scan interval 5 ms
Control card, USB serial communication1.1 (Full speed)
USB plugUSB type B "device" plug

ACAUTION

Connection to PC is carried out via a standard host/ device USB cable.
The USB connection is galvanically isolated from the supply voltage (PELV) and other high-voltage terminals. The USB connection is not galvanically isolated from protection ground. Use only an isolated laptop/PC as connection to the USB connector on the frequency converter or an isolated USB cable/converter.

8.2 Efficiency

Efficiency of the Frequency Converter ($\eta_{\text {vLT }}$)
The load on the frequency converter has little effect on its efficiency. In general, the efficiency is the same at the rated motor frequency $f_{M, N}$, whether the motor supplies 100% of the rated shaft torque or only 75%, in case of partial loads.
The efficiency of the frequency converter does not change even if other U/f characteristics are chosen. However, the U/f characteristics influence the efficiency of the motor.

The efficiency declines slightly when the switching frequency is set to a value of above 5 kHz . The efficiency is slightly reduced when the mains voltage is 480 V , or if the motor cable is longer than 30 m .

Frequency Converter Efficiency Calculation

Calculate the efficiency of the frequency converter at different speeds and loads based on Illustration 8.2. The factor in this graph must be multiplied with the specific efficiency factor listed in the specification tables in chapter 8.1.1 Mains Supply 3x380-480 V AC and chapter 8.1.2 Mains Supply 3x525-690 V AC.

Illustration 8.2 Typical Efficiency Curves

Example: Assume a $160 \mathrm{~kW}, 380-480 \mathrm{~V}$ AC frequency converter at 25% load at 50% speed. Illustration 8.2 shows 0.97 - rated efficiency for a 160 kW frequency converter is 0.98 . The actual efficiency is then: $0.97 \times 0.98=0.95$.

Efficiency of the Motor ($\boldsymbol{\eta}$ мотов)

The efficiency of a motor connected to the frequency converter depends on magnetizing level. In general, the efficiency is as good as with mains operation. The efficiency of the motor depends on the type of motor.

In the range of $75-100 \%$ of the rated torque, the efficiency of the motor is practically constant, both when the frequency converter controls it and when it runs directly on mains.

In small motors, the influence from the U/f characteristic on efficiency is marginal. However, in motors from 11 kW and up, the advantages are significant.

In general, the switching frequency does not affect the efficiency of small motors. Motors from 11 kW and up have their efficiency improved (1-2\%) because the shape of the motor current sine wave is almost perfect at high switching frequency.
Efficiency of the System ($\eta_{\text {SYSTEM }}$)
To calculate system efficiency, the efficiency of the frequency converter ($\eta_{V L T}$) is multiplied by the efficiency of the motor ($\eta_{\text {мотов }}$):
$\eta_{\text {SYSTEM }}=\eta_{\text {VLT }} \times \eta_{\text {MOTOR }}$

8.3 Acoustic Noise

The acoustic noise from the frequency converter comes from three sources:

1. DC intermediate circuit coils.
2. Integral fan.
3. RFI filter choke.

The typical values measured at a distance of 1 m from the unit:

Enclosure	Full fan speed [dBA]
N110	71
N132	71
N160	72
N200	74
N250	75
N315	73
E1/E2 *	74
E1/E2 **	83
F1/F2/F3/F4	80
F8/F9/F10/F11/F12/F13	84.5
$* 315 ~ k W, ~ 380-480 ~ V A C . ~$ 450 kW and 500 kW, 525-690 V	
AC only.	
** Remaining E1+E2 power sizes.	

Table 8.16 Acoustic Noise Levels

8.4 Peak Voltage on Motor

When a transistor in the inverter bridge switches, the voltage across the motor increases by a dU/dt ratio depending on:

- the motor cable (type, cross-section, length screened or unscreened)
- inductance

The natural induction causes an overshoot UPEAK in the motor voltage before it stabilises itself at a level

General Specifications and ...
depending on the voltage in the intermediate circuit. The rise time and the peak voltage Upeak affect the service life of the motor. If the peak voltage is too high, especially motors without phase coil insulation are affected. If the motor cable is short (a few metres), the rise time and peak voltage are lower.
If the motor cable is long (100 m), the rise time and peak voltage increases.

In motors without phase insulation paper or other insulation reinforcement suitable for operation with voltage supply (such as a frequency converter), fit a sinewave filter on the output of the frequency converter.

To obtain approximate values for cable lengths and voltages not mentioned here, use the following rules of thumb:

1. Rise time increases/decreases proportionally with cable length.
2. $\quad U_{\text {PEAK }}=\mathrm{DC}$ link voltage $\times 1.9$
$(D C$ link voltage $=$ Mains voltage $\times 1.35)$.
3. $d U / d t=\frac{0.8 \times U P E A K}{\text { Risetime }}$

Data are measured according to IEC 60034-17.
Cable lengths are in metres.
Cable Length Specifications:

Frequency converter N110-N315, T4/380-500 V				
Cable length [m]	Mains voltage $[\mathrm{V}]$	Rise time $[\mu \mathrm{sec}]$	Vpeak $[\mathrm{kV}]$	dU/dt $[\mathrm{kV} / \mu \mathrm{sec}]$
30	400	0.26	1.180	2.109

Table 8.17 N110-N315, T4/380-500 V

Frequency converter P400-P1M0, T4/380-500 V				
Cable length $[\mathrm{m}]$	Mains voltage $[\mathrm{V}]$	Rise time $[\mu \mathrm{sec}]$	Vpeak $[\mathrm{kV}]$	dU/dt $[\mathrm{kV} / \mu \mathrm{sec}]$
30	500	0.71	1.165	1.389
30	400	0.61	0.942	1.233
30	500^{1}	0.80	0.906	0.904
30	400^{1}	0.82	0.760	0.743

Table 8.18 P400-P1M0, T4/380-500 V

1) With Danfoss dU/dt filter.

N110-N160, T7 $(525-690 \mathrm{~V})$				
Cable length [m]	Mains voltage $[\mathrm{V}]$	Rise time $[\mu \mathrm{sec}]$	Vpeak $[\mathrm{kV}]$	$\mathrm{dU} / \mathrm{dt}$ $[\mathrm{kV} / \mu \mathrm{sec}]$
150	690	0.36	2135	2.197

Table 8.19 N110-N160, T7 (525-690 V)

N200-N400, T7 $(525-690 \mathrm{~V})$				
Cable length [m]	Mains voltage $[\mathrm{V}]$	Rise time $[\mu \mathrm{sec}]$	Vpeak $[\mathrm{kV}]$	$\mathrm{dU} / \mathrm{dt}$ $[\mathrm{kV} / \mu \mathrm{sec}]$
150	690	0.46	2210	1.744

Table 8.20 N200-N400, T7 (525-690 V)

Frequency converter P450 - P1M4, T7/525-690 V				
Cable length $[\mathrm{m}]$	Mains voltage $[\mathrm{V}]$	Rise time $[\mu \mathrm{sec}]$	Vpeak $[\mathrm{kV}]$	$\mathrm{dU} / \mathrm{dt}$ $[\mathrm{kV} / \mu \mathrm{sec}]$
30	690	0.57	1.611	2.261
30	575	0.25		2.510
30	$690^{1)}$	1.13	1.629	1.150

Table 8.21 P450-P1M4, T7/525-690 V

1) With Danfoss dU/dt filter.

8.5 Special Conditions

8.5.1 Purpose of Derating

Consider derating when using the frequency converter at low air pressure (heights), at low speeds, with long motor cables, cables with a large cross section or at high ambient temperature. The required action is described in this section.

8.5.2 Derating for Low Air Pressure

The cooling capability of air is decreased at lower air pressure.

Below 1000 m altitude no derating is necessary but above 1000 m the ambient temperature ($\mathrm{T}_{\mathrm{AMB}}$) or max. output current (lout) derate in accordance with

An alternative is to lower the ambient temperature at high altitudes and ensure 100% output current at high altitudes. As an example of how to read the graph, the situation at 2 km is elaborated. At a temperature of $45{ }^{\circ} \mathrm{C}$ (TAMB, MAX - 3.3 K), 91% of the rated output current is available. At a temperature of $41.7^{\circ} \mathrm{C}, 100 \%$ of the rated output current is available.

Illustration 8.3 Derating of Output Current Versus Altitude at $\mathrm{T}_{\text {AMB, max }}$

Illustration 8.4 Derating of Output Current Versus Altitude at $\mathrm{T}_{\text {AMB, MAX }}$

8.5.3 Derating for Running at Low Speed

When a motor is connected to a frequency converter, it is necessary to check that the cooling of the motor is adequate.
The level of heating depends on the load on the motor, as well as the operating speed and time.

Constant torque applications (CT mode)

In constant torque applications, it is possible for a motor to draw full current while operating at slow speeds. In such cases, the cooling fins do not adequately cool the motor, causing it to overheat. When the motor is operating continuously at less than half its rated speed, apply more cooling.

Alternately, an oversized motor can be used to reduce the load level. However, the size of the motor is limited to one size larger than that specified by the frequency converter.

An alternative is to reduce the load level of the motor by choosing a larger motor. However, the design of the frequency converter puts a limit to the motor size.

Variable (Quadratic) torque applications (VT)

In VT applications such as centrifugal pumps and fans, where the torque is proportional to the square of the speed and the power is proportional to the cube of the speed, there is no need for more cooling or de-rating of the motor.

In the graphs shown below, the typical VT curve is below the maximum torque with de-rating and maximum torque with forced cooling at all speeds.

Illustration 8.5 Maximum Load for a Standard Motor at $40^{\circ} \mathrm{C}$

----	Typical torque at VT load
$-\cdot-\cdot-$	Max torque with forced cooling
-	Max torque

Table 8.22 Legend to Illustration 8.5

NOTICE

Over-synchronous speed operation results in the available motor torque decreasing inversely proportional with the increase in speed. Consider this decrease during the design phase to avoid overloading the motor.

8.5.4 Automatic Adaptations to Ensure Performance

The frequency converter constantly checks for critical levels of internal temperature, load current, high voltage on the intermediate circuit and low motor speeds. As a response to a critical level, the frequency converter can adjust the switching frequency and/or change the switching pattern in order to ensure the performance of the frequency converter. The capability to reduce the output current automatically extends the acceptable operating conditions even further.

8.5.5 Derating for Ambient Temperature

Frame model	Normal overload NO, 110\% 60 AVM										Normal overload NO, 110\% SFAVM						
D-Frame N110 to N315 $380-480$ V									$\underbrace{45^{\circ} \mathrm{C}}_{8} \begin{aligned} & 50^{\circ} \mathrm{C} \\ & 55^{\circ} \mathrm{C} \\ & \hline \end{aligned}$								-
E \& F-Frame P355 to P1M0 380-480 V				C				5					\square	2 fsw [kHz]		$\begin{aligned} & 40^{\circ} \mathrm{C} \\ & -45^{\circ} \mathrm{C} \\ & 50^{\circ} \mathrm{C} \\ & 55^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	

Table 8.23 Derating Tables for Frequency Converters Rated 380-480 V (T4)

Table 8.24 Derating Tables for Frequency Converters Rated 525-690 V (T7)

8.6 Troubleshooting

A warning or alarm is signalled by the relevant LED on the front of the frequency converter and indicated by a code on the display.

A warning remains active until its cause is terminated. Under certain circumstances, operation of the motor may still continue. Warning messages are sometimes critical, but not always.

In the event of an alarm, the frequency converter trips. Reset alarms to restart operation once their cause has been rectified.

There are 4 ways to restart after an event:

1. Pressing [RESET] on the LCP.
2. Via a digital input with the "Reset" function.
3. Via serial communication/optional fieldbus.
4. By resetting automatically using the Auto Reset function, which is a default setting for VLT ${ }^{\circledR}$ HVAC Drive. See $14-20$ Reset Mode in the VLT ${ }^{\circledR}$ HVAC Basic Drive FC 102 Programming Guide

NOTICE

After pressing [RESET], press the [Auto On] or [Hand On] button to restart the motor.

If an alarm cannot be reset, the reason may be that its cause has not been rectified, or the alarm is trip-locked (see also Table 8.25).

General Specifications and ...

ACAUTION

Alarms that are trip-locked offer additional protection, meaning that the mains supply must be switched off before the alarm can be reset. After switching mains supply back on, the frequency converter is no longer blocked and may be reset as described above once the cause has been rectified.
Alarms that are not trip-locked can also be reset using the automatic reset function in 14-20 Reset Mode (Warning: automatic wake-up is possible)
If a warning and alarm is marked against a code in Table 8.25, this means that either a warning occurs before an alarm, or it can be specified whether it is a warning or an alarm that is to be displayed for a given fault.
This is possible, for instance, in 1-90 Motor Thermal Protection. After an alarm or trip, the motor carries on coasting, and the alarm and warning flash on the frequency converter. Once the problem has been rectified, only the alarm continues flashing.

NOTICE

No missing motor phase detection (no 30-32) and no stall detection is active when 1-10 Motor Construction is set to [1] PM non salient SPM.

No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
1	10 Volts low	X			
2	Live zero error	(X)	(X)		6-01
3	No motor	(X)			1-80
4	Mains phase loss	(X)	(X)	(X)	14-12
5	DC link voltage high	X			
6	DC link voltage low	X			
7	DC over voltage	X	X		
8	DC under voltage	X	X		
9	Inverter overloaded	X	X		
10	Motor ETR over temperature	(X)	(X)		1-90
11	Motor thermistor over temperature	(X)	(X)		1-90
12	Torque limit	X	X		
13	Over Current	X	X	X	
14	Earth fault	X	X	X	
15	Hardware mismatch		X	X	
16	Short Circuit		X	X	
17	Control word timeout	(X)	(X)		8-04
18	Start failed		X		
23	Internal Fan Fault	X			
24	External Fan Fault	X			14-53
25	Brake resistor short-circuited	X			
26	Brake resistor power limit	(X)	(X)		2-13
27	Brake chopper short-circuited	X	X		
28	Brake check	(X)	(X)		2-15
29	Drive over temperature	X	X	X	
30	Motor phase U missing	(X)	(X)	(X)	4-58
31	Motor phase V missing	(X)	(${ }^{\text {(}}$	(${ }^{\text {(}}$	4-58
32	Motor phase W missing	(X)	(X)	(X)	4-58
33	Inrush fault		X	X	
34	Fieldbus communication fault	X	X		
35	Out of frequency range	X	X		
36	Mains failure	X	X		

General Specifications and ...

No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
37	Phase imbalance	X	X		
38	Internal fault		X	X	
39	Heatsink sensor		X	X	
40	Overload of digital output terminal 27	(X)			5-00, 5-01
41	Overload of digital output terminal 29	(X)			5-00, 5-02
42	Overload of digital output on X30/6	(X)			5-32
42	Overload of digital output on X30/7	(X)			5-33
46	Pwr. card supply		X	X	
47	24 V supply low	X	X	X	
48	1.8 V supply low		X	X	
49	Speed limit	X	(X)		1-86
50	AMA calibration failed		X		
51	AMA check $U_{\text {nom }}$ and $I_{\text {nom }}$		X		
52	AMA low $\mathrm{I}_{\text {nom }}$		X		
53	AMA motor too big		X		
54	AMA motor too small		X		
55	AMA parameter out of range		X		
56	AMA interrupted by user		X		
57	AMA timeout		X		
58	AMA internal fault	X	X		
59	Current limit	X			
60	External interlock	X			
62	Output frequency at maximum limit	X			
64	Voltage limit	X			
65	Control board over-temperature	X	X	X	
66	Heat sink temperature low	X			
67	Option configuration has changed		X		
68	Safe torque off	(X)	$\mathrm{X}^{1)}$		5-19
69	Pwr. card temp (E- and F-frame only)		X	X	
70	Illegal FC configuration			X	
71	PTC 1 safe torque off	X	$\mathrm{X}^{1)}$		
72	Dangerous failure			$\mathrm{X}^{1)}$	
73	Safe torque off auto restart				
76	Power unit setup	X			
79	Illegal PS config		X	X	
80	Drive initialized to default value		X		
91	Analogue input 54 wrong settings			X	
92	NoFlow	X	X		22-2*
93	Dry pump	X	X		22-2*
94	End of curve	X	X		22-5*
95	Broken belt	X	X		22-6*
96	Start delayed	X			22-7*
97	Stop delayed	X			22-7*
98	Clock fault	X			0-7*
104	Mixing fan fault	X	X		14-53
201	Fire M was active				
202	Fire M limits exceeded				
203	Missing motor				
204	Locked rotor				
243	Brake IGBT	X	X		
244	Heatsink temp	X	X	X	
245	Heatsink sensor		X	X	

General Specifications and ...
Design Guide

No.	Description	Warning	Alarm/Trip	Alarm/Trip Lock	Parameter Reference
246	Pwr.card supply		X	X	
247	Pwr.card temp		X	X	
248	Illegal PS config		X	X	
250	New spare parts			X	
251	New type code		X	X	

Table 8.25 Alarm/Warning Code List
(X) Dependent on parameter

1) Cannot be auto reset via 14-20 Reset Mode

A trip is the action when an alarm has appeared. The trip will coast the motor and can be reset by pressing the reset button or making a reset by a digital input (parameter group 5-1* [1]). The original event that caused an alarm cannot damage the frequency converter or cause dangerous conditions. A trip lock is an action when an alarm occurs, which may cause damage to frequency converter or connected parts. A trip lock situation can only be reset by a power cycling.

General Specifications and ...

Warning	yellow
Alarm	flashing red
Trip locked	yellow and red

Table 8.26 LED Indications

Alarm Word and Extended Status Word					
Bit	Hex	Dec	Alarm Word	Warning Word	Extended Status Word
0	00000001	1	Brake Check	Brake Check	Ramping
1	00000002	2	Pwr. Card Temp	Pwr. Card Temp	AMA Running
2	00000004	4	Earth Fault	Earth Fault	Start CW/CCW
3	00000008	8	Ctrl.Card Temp	Ctrl.Card Temp	Slow Down
4	00000010	16	Ctrl. Word TO	Ctrl. Word TO	Catch Up
5	00000020	32	Over Current	Over Current	Feedback High
6	00000040	64	Torque Limit	Torque Limit	Feedback Low
7	00000080	128	Motor Th Over	Motor Th Over	Output Current High
8	00000100	256	Motor ETR Over	Motor ETR Over	Output Current Low
9	00000200	512	Inverter Overld.	Inverter Overld.	Output Freq High
10	00000400	1024	DC under Volt	DC under Volt	Output Freq Low
11	00000800	2048	DC over Volt	DC over Volt	Brake Check OK
12	00001000	4096	Short Circuit	DC Voltage Low	Braking Max
13	00002000	8192	Inrush Fault	DC Voltage High	Braking
14	00004000	16384	Mains ph. Loss	Mains ph. Loss	Out of Speed Range
15	00008000	32768	AMA Not OK	No Motor	OVC Active
16	00010000	65536	Live Zero Error	Live Zero Error	
17	00020000	131072	Internal Fault	10V Low	
18	00040000	262144	Brake Overload	Brake Overload	
19	00080000	524288	U phase Loss	Brake Resistor	
20	00100000	1048576	V phase Loss	Brake IGBT	
21	00200000	2097152	W phase Loss	Speed Limit	
22	00400000	4194304	Fieldbus Fault	Fieldbus Fault	
23	00800000	8388608	24 V Supply Low	24V Supply Low	
24	01000000	16777216	Mains Failure	Mains Failure	
25	02000000	33554432	1.8V Supply Low	Current Limit	
26	04000000	67108864	Brake Resistor	Low Temp	
27	08000000	134217728	Brake IGBT	Voltage Limit	
28	10000000	268435456	Option Change	Unused	
29	20000000	536870912	Drive Initialized	Unused	
30	40000000	1073741824	Safe torque off	Unused	
31	80000000	2147483648	Mech. brake low (A63)	Extended Status Word	

Table 8.27 Description of Alarm Word, Warning Word and Extended Status Word

The alarm words, warning words and extended status words can be read out via serial bus or optional fieldbus for diagnosis. See also 16-90 Alarm Word, 16-92 Warning Word and 16-94 Ext. Status Word.

General Specifications and ...
Design Guide

8.6.1 Alarm Words

16-90 Alarm Word

Bit (Hex)	Alarm Word (16-90 Alarm Word)
00000001	
00000002	Power card over temperature
00000004	Earth fault
00000008	
00000010	Control word timeout
00000020	Over current
00000040	
00000080	Motor thermistor over temp.
00000100	Motor ETR over temperature
00000200	Inverter overloaded
00000400	DC link under voltage
00000800	DC link over voltage
00001000	Short circuit
00002000	
00004000	Mains phase loss
00008000	AMA not OK
00010000	Live zero error
00020000	Internal fault
00040000	
00080000	Motor phase U is missing
00100000	Motor phase V is missing
00200000	Motor phase W is missing
00800000	Control Voltage Fault
01000000	
02000000	VDD, supply low
04000000	Brake resistor short circuit
08000000	Brake chopper fault
10000000	Earth fault DESAT
20000000	Drive initialised
40000000	Safe torque off [A68]
80000000	

Table 8.28 Alarm Word

16-91 Alarm Word 2

Bit $($ Hex $)$	Alarm Word 2 (16-91 Alarm Word 2)
00000001	
00000002	Reserved
00000004	Service Trip, Typecode / Sparepart
00000008	Reserved
00000010	Reserved
00000020	
00000040	
00000080	Broken Belt
00000100	Not used
00000200	Not used
00000400	Reserved
00000800	Reserved
00001000	Reserved
00002000	Reserved
00004000	Reserved
00008000	Resved
00010000	Res 1 Safe Torque Off [A71]
00020000	Res used
00040000	Fans error
00080000	ECB error
00100000	Reserved
00200000	Reserved
00400000	Reserved
00800000	Reserved
01000000	Reserved
02000000	
04000000	
08000000	
10000000	
20000000	Reserved
40000000	
8000000	

Table 8.29 Alarm Word 2

General Specifications and ...
Design Guide

8.6.2 Warning Words

16-92 Warning Word

Bit (Hex)	Warning Word (16-92 Warning Word)
00000001	
00000002	Power card over temperature
00000004	Earth fault
00000008	
00000010	Control word timeout
00000020	Over current
00000040	
00000080	Motor thermistor over temp.
00000100	Motor ETR over temperature
00000200	Inverter overloaded
00000400	DC link under voltage
00000800	DC link over voltage
00001000	
00002000	
00004000	Mains phase loss
00008000	No motor
00010000	Live zero error
00020000	
00040000	
00080000	
00100000	
00200000	
00400000	
00800000	
01000000	
02000000	Current limit
04000000	
08000000	
10000000	
20000000	
40000000	
80000000	

Table 8.30 Warning Words

16-93 Warning Word 2

Bit (Hex)	Warning Word 2 (16-93 Warning Word 2)
00000001	
00000002	
00000004	Clock Failure
00000008	Reserved
00000010	Reserved
00000020	
00000040	
00000080	End of Curve
00000100	Broken Belt
00000200	Not used
00000400	Reserved
00000800	Reserved
00001000	Reserved
00002000	Reserved
00004000	Reserved
00008000	Reserved
00010000	Reserved
00020000	Not used
00040000	Fans warning
00080000	
00100000	Reserved
00200000	Reserved
00400000	Reserved
00800000	Reserved
01000000	Reserved
02000000	Reserved
04000000	Reserved
08000000	Reserved
10000000	Reserved
20000000	Reserved
40000000	PTC 1 Safe Torque Off [W71]
80000000	

Table 8.31 Warning Words 2

General Specifications and ...

8.6.3 Extended Status Words

Extended status word, 16-94 Ext. Status Word

Bit (Hex)	Extended Status Word (16-94 Ext. Status Word)
00000001	Ramping
00000002	AMA tuning
00000004	Start CW/CCW
00000008	Not used
00000010	Not used
00000020	Feedback high
00000040	Feedback low
00000080	Output current high
00000100	Output current low
00000200	Output frequency high
00000400	Output frequency low
00000800	Brake check OK
00001000	Braking max
00002000	Braking
00004000	Out of speed range
00008000	OVC active
00010000	AC brake
00020000	Password timelock
00040000	Password protection
00080000	Reference high
00100000	Reference low
00200000	Local ref./remote ref.
00400000	Reserved
00800000	Reserved
01000000	Reserved
02000000	Reserved
04000000	Reserved
08000000	Reserved
10000000	Reserved
20000000	Reserved
40000000	Reserved
8000000	Reserved

Table 8.32 Extended Status Word

Extended status word 2, 16-95 Ext. Status Word 2

Bit (Hex)	Extended Status Word 2 (16-95 Ext. Status Word 2)
00000001	Off
00000002	Hand/Auto
00000004	Not used
00000008	Not used
00000010	Not used
00000020	Relay 123 active
00000040	Start prevented
00000080	Control ready
00000100	Drive ready
00000200	Quick stop
00000400	DC brake
00000800	Stop
00001000	Standby
00002000	Freeze output request
00004000	Freeze output
00008000	Jog request
00010000	Jog
00020000	Start request
00040000	Start
00080000	Start applied
00100000	Start delay
00200000	Sleep
00400000	Sleep boost
00800000	Running
01000000	Bypass
02000000	Fire mode
04000000	Reserved
08000000	Reserved
10000000	Reserved
20000000	Reserved
40000000	Reserved
80000000	Reserved

Table 8.33 Extended Status Word 2

8.6.4 Warning and Alarm Introduction

The warning/alarm information below defines each warning/alarm condition, provides the probable cause for the condition, and details a remedy or troubleshooting procedure.

Test procedures are described in the service manual and should only be performed by qualified personnel.

WARNING 1, 10 Volts low

The control card voltage is below 10 V from terminal 50. Remove some of the load from terminal 50 , as the 10 V supply is overloaded. Max. 15 mA or minimum 590Ω.

This condition can be caused by a short in a connected potentiometer or improper wiring of the potentiometer.

Troubleshooting

Remove the wiring from terminal 50 . If the warning clears, the problem is with the customer wiring. If the warning does not clear, replace the control card.

WARNING/ALARM 2, Live zero error

This warning or alarm only appears if programmed by the user in 6-01 Live Zero Timeout Function. The signal on one of the analogue inputs is less than 50% of the minimum value programmed for that input. Broken wiring or faulty device sending the signal can cause this condition.

Troubleshooting

Check connections on all the analog input terminals:

- Control card terminals 53 and 54 for signals, terminal 55 common.
- MCB 101 terminals 11 and 12 for signals, terminal 10 common.
- MCB 109 terminals 1, 3, 5 for signals, terminals $2,4,6$ common).
Check that the frequency converter programming and switch settings match the analog signal type.

Perform input terminal signal test.

WARNING/ALARM 4, Mains phase loss

A phase is missing on the supply side, or the mains voltage imbalance is too high. This message also appears for a fault in the input rectifier on the frequency converter. Options are programmed at 14-12 Function at Mains Imbalance.

Troubleshooting

Check the supply voltage and supply currents to the frequency converter.

WARNING 5, DC link voltage high

The intermediate circuit voltage (DC) is higher than the high voltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING 6, DC link voltage low

The intermediate circuit voltage (DC) is lower than the low voltage warning limit. The limit is dependent on the frequency converter voltage rating. The unit is still active.

WARNING/ALARM 7, DC overvoltage

If the intermediate circuit voltage exceeds the limit, the frequency converter trips after a time.

Troubleshooting

- Connect a brake resistor
- Extend the ramp time
- Change the ramp type
- Activate the functions in 2-10 Brake Function
- Increase 14-26 Trip Delay at Inverter Fault

WARNING/ALARM 8, DC under voltage

If the intermediate circuit voltage (DC link) drops below the under voltage limit, the frequency converter checks for a 24 V DC backup supply. If no 24 V DC backup supply is connected, the frequency converter trips after a fixed time delay. The time delay varies with unit size.

Troubleshooting

- Check that the supply voltage matches the frequency converter voltage.
- Perform input voltage test.
- Perform soft charge circuit test.

WARNING/ALARM 9, Inverter overload

The frequency converter is about to cut out because of an overload (too high current for too long). The counter for electronic, thermal inverter protection gives a warning at 98% and trips at 100%, while giving an alarm. The frequency converter cannot be reset until the counter is below 90%.
The fault is that the frequency converter is overloaded by more than 100% for too long.

Troubleshooting

- Compare the output current on the LCP with the frequency converter rated current.
- Compare the output current on the LCP with measured motor current.
- Display the thermal drive load on the LCP and monitor the value. When running above the frequency converter continuous current rating, the counter increases. When running below the frequency converter continuous current rating, the counter decreases.

See chapter 8.5 Special Conditions for more details if a high switching frequency is required.
WARNING/ALARM 10, Motor overload temperature According to the electronic thermal protection (ETR), the motor is too hot. Select whether the frequency converter gives a warning or an alarm when the counter reaches 100% in 1-90 Motor Thermal Protection. The fault occurs
when the motor is overloaded by more than 100% for too long.

Troubleshooting

- Check for motor overheating.
- Check if the motor is mechanically overloaded.
- Check that the motor current set in 1-24 Motor Current is correct.
- Ensure that motor data in parameters 1-20 through 1-25 are set correctly.
- If an external fan is in use, check in 1-91 Motor External Fan that it is selected.
- Run AMA in 1-29 Automatic Motor Adaptation (AMA) tune the frequency converter to the motor more accurately and reduce thermal loading.

WARNING/ALARM 11, Motor thermistor overtemp

The thermistor might be disconnected. Select whether the frequency converter gives a warning or an alarm in 1-90 Motor Thermal Protection.

Troubleshooting

- Check for motor overheating.
- Check if the motor is mechanically overloaded.
- When using terminal 53 or 54 , check that the thermistor is connected correctly between either terminal 53 or 54 (analogue voltage input) and terminal 50 (+10 V supply) and that the terminal switch for 53 or 54 is set for voltage. Check that 1-93 Thermistor Source selects terminal 53 or 54.
- When using digital inputs 18 or 19 , check that the thermistor is connected correctly between either terminal 18 or 19 (digital input PNP only) and terminal 50. Check 1-93 Thermistor Source selects terminal 18 or 19.

WARNING/ALARM 12, Torque limit

The torque has exceeded the value in 4-16 Torque Limit Motor Mode or the value in 4-17 Torque Limit Generator Mode. 14-25 Trip Delay at Torque Limit can change this from a warning only condition to a warning followed by an alarm.

Troubleshooting

- If the motor torque limit is exceeded during ramp up, extend the ramp up time.
- If the generator torque limit is exceeded during ramp down, extend the ramp down time.
- If torque limit occurs while running, possibly increase the torque limit. Be sure the system can operate safely at a higher torque.
- Check the application for excessive current draw on the motor.

WARNING/ALARM 13, Over current

The inverter peak current limit (approximately 200\% of the rated current) is exceeded. The warning lasts about 1.5 s , then the frequency converter trips and issues an alarm. This fault may be caused by shock loading or fast acceleration with high inertia loads. If extended mechanical brake control is selected, trip can be reset externally.

Troubleshooting

- Remove power and check if the motor shaft can be turned.
- Check that the motor size matches the frequency converter.
- Check parameters 1-20 through 1-25 for correct motor data.

ALARM 14, Earth (ground) fault

There is current from the output phases to earth, either in the cable between the frequency converter and the motor or in the motor itself.

Troubleshooting

- Remove power to the frequency converter and repair the earth fault.
- Check for earth faults in the motor by measuring the resistance to ground of the motor leads and the motor with a megohmmeter.

ALARM 15, Hardware mismatch

A fitted option is not operational with the present control board hardware or software.

Record the value of the following parameters and contact Danfoss.

- $\quad 15-40$ FC Type
- 15-41 Power Section
- 15-42 Voltage
- 15-43 Software Version
- 15-45 Actual Typecode String
- 15-49 SW ID Control Card
- 15-50 SW ID Power Card
- 15-60 Option Mounted
- 15-61 Option SW Version (for each option slot)

ALARM 16, Short circuit

There is short-circuiting in the motor or motor wiring.
Remove power to the frequency converter and repair the short circuit.

WARNING/ALARM 17, Control word timeout

There is no communication to the frequency converter. The warning is only active when 8-04 Control Timeout Function is not set to OFF. If 8 -04 Control Timeout Function is set to Stop and Trip, a warning appears and the frequency converter ramps down until it stops then displays an alarm.

General Specifications and ...

Troubleshooting

- Check connections on the serial communication cable.
- Increase 8-03 Control Timeout Time
- Check the operation of the communication equipment.
- Verify a proper installation based on EMC requirements.

ALARM 18, Start failed

The speed has not exceeded 1-77 Compressor Start Max Speed [RPM] during start within the allowed time. (set in 1-79 Pump Start Max Time to Trip). This may be caused by a blocked motor.

WARNING 23, Internal fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in 14-53 Fan Monitor ([0] Disabled).
For the D, E, and F Frame units, the regulated voltage to the fans is monitored.

Troubleshooting

- Check for proper fan operation.
- Cycle power to the frequency converter and check that the fan operates briefly at start up.
- Check the sensors on the heatsink and control card.

WARNING 24, External fan fault

The fan warning function is an extra protective function that checks if the fan is running/mounted. The fan warning can be disabled in 14-53 Fan Monitor ([0] Disabled).

Troubleshooting

- Check for proper fan operation.
- Cycle power to the frequency converter and check that the fan operates briefly at start up.
- Check the sensors on the heatsink and control card.

WARNING 25, Brake resistor short circuit

The brake resistor is monitored during operation. If a short circuit occurs, the brake function is disabled and the warning appears. The frequency converter is still operational but without the brake function. Remove power to the frequency converter and replace the brake resistor (see 2-15 Brake Check).

WARNING/ALARM 26, Brake resistor power limit

The power transmitted to the brake resistor is calculated as a mean value over the last 120 s of run time. The calculation is based on the intermediate circuit voltage and the brake resistance value set in 2-16 AC brake Max. Current. The warning is active when the dissipated braking is higher than 90% of the brake resistance power. If [2] Trip is selected in 2-13 Brake Power Monitoring, the frequency converter trips when the dissipated braking power reaches 100%.

WARNING/ALARM 27, Brake chopper fault

The brake transistor is monitored during operation and if a short circuit occurs, the brake function is disabled and a warning is issued. The frequency converter is still operational but, since the brake transistor has shortcircuited, substantial power is transmitted to the brake resistor, even if it is inactive.
Remove power to the frequency converter and remove the brake resistor.

WARNING/ALARM 28, Brake check failed

The brake resistor is not connected or not working. Check 2-15 Brake Check.

ALARM 29, Heat Sink temp

The maximum temperature of the heatsink has been exceeded. The temperature fault does not reset until the temperature falls below a defined heatsink temperature. The trip and reset points are different based on the frequency converter power size.

Troubleshooting

Check for the following conditions.

- Ambient temperature too high.
- Motor cable too long.
- Incorrect airflow clearance above and below the frequency converter.
- Blocked airflow around the frequency converter.
- Damaged heatsink fan.
- Dirty heatsink.

ALARM 30, Motor phase U missing

Motor phase U between the frequency converter and the motor is missing.

Remove power from the frequency converter and check motor phase U.

ALARM 31, Motor phase V missing

Motor phase V between the frequency converter and the motor is missing.
Remove power from the frequency converter and check motor phase V.

ALARM 32, Motor phase W missing

Motor phase W between the frequency converter and the motor is missing.

Remove power from the frequency converter and check motor phase W.

ALARM 33, Inrush fault

Too many power-ups have occurred within a short time period. Let the unit cool to operating temperature.
WARNING/ALARM 34, Fieldbus communication fault The fieldbus on the communication option card is not working.

General Specifications and ...

WARNING/ALARM 36, Mains failure

This warning/alarm is only active if the supply voltage to the frequency converter is lost and 14-10 Mains Failure is not set to [0] No Function. Check the fuses to the frequency converter and mains power supply to the unit.

ALARM 38, Internal fault

When an internal fault occurs, a code number defined in Table 8.34 is displayed.

Troubleshooting

- Cycle power
- Check that the option is properly installed
- Check for loose or missing wiring

If necessary, contact the Danfoss supplier or service department. Note the code number for further troubleshooting directions.

No.	Text
0	Serial port cannot be initialised. Contact the Danfoss supplier or Danfoss service department.
256-258	Power EEPROM data is defective or too old.
512-519	Internal fault. Contact your Danfoss supplier or Danfoss Service Department.
783	Parameter value outside of $\mathrm{min} / \mathrm{max}$ limits.
1024-1284	Internal fault. Contact your Danfoss supplier or the Danfoss Service Department.
1299	Option SW in slot A is too old.
1300	Option SW in slot B is too old.
1302	Option SW in slot C1 is too old.
1315	Option SW in slot A is not supported (not allowed).
1316	Option SW in slot B is not supported (not allowed).
1318	Option SW in slot C1 is not supported (not allowed).
1379-2819	Internal fault. Contact your Danfoss supplier or Danfoss Service Department.
2820	LCP stack overflow.
2821	Serial port overflow.
2822	USB port overflow.
3072-5122	Parameter value is outside its limits.
5123	Option in slot A: Hardware incompatible with control board hardware.
5124	Option in slot B: Hardware incompatible with control board hardware.
5125	Option in slot C0: Hardware incompatible with control board hardware.
5126	Option in slot C1: Hardware incompatible with control board hardware.
5376-6231	Internal fault. Contact your Danfoss supplier or Danfoss Service Department.

Table 8.34 Internal Fault Codes

ALARM 39, Heat sink sensor

No feedback from the heatsink temperature sensor.

The signal from the IGBT thermal sensor is not available on the power card. The problem could be on the power card, gate drive card, or ribbon cable between the power card and gate drive card.

WARNING 40, Overload of digital output terminal 27

Check the load connected to terminal 27 or remove shortcircuit connection. Check 5-00 Digital I/O Mode and 5-01 Terminal 27 Mode.

WARNING 41, Overload of digital output terminal 29

Check the load connected to terminal 29 or remove shortcircuit connection. Check 5-00 Digital I/O Mode and 5-02 Terminal 29 Mode.

WARNING 42, Overload of digital output on X30/6 or overload of digital output on X30/7

For X30/6, check the load connected to X30/6 or remove the short-circuit connection. Check 5-32 Term X30/6 Digi Out (MCB 101).

For X30/7, check the load connected to X30/7 or remove the short-circuit connection. Check 5-33 Term X30/7 Digi Out (MCB 101).

ALARM 45, Earth fault 2

Earth (ground) fault on start up.

Troubleshooting

- Check for proper earthing (grounding) and loose connections.
- Check for proper wire size.
- Check motor cables for short-circuits or leakage currents.

ALARM 46, Power card supply

The supply on the power card is out of range.
There are 3 power supplies generated by the switch mode power supply (SMPS) on the power card: $24 \mathrm{~V}, 5 \mathrm{~V},+/-18$ V. When powered with 24 V DC with the MCB 107 option, only the 24 V and 5 V supplies are monitored. When powered with three phase mains voltage, all 3 supplies are monitored.

Troubleshooting

- Check for a defective power card.
- Check for a defective control card.
- Check for a defective option card.
- If a 24 V DC power supply is used, verify proper supply power.

WARNING 47, 24 V supply low

The 24 V DC is measured on the control card. The external 24 V DC backup power supply may be overloaded. If not contact Danfoss.

WARNING 48, 1.8 V supply low

The 1.8 V DC supply used on the control card is outside of allowable limits. The power supply is measured on the control card. Check for a defective control card. If an option card is present, check for an overvoltage condition.

General Specifications and ...

WARNING 49, Speed limit

When the speed is not within the specified range in 4-11 Motor Speed Low Limit [RPM] and 4-13 Motor Speed High Limit [RPM], the frequency converter shows a warning. When the speed is below the specified limit in 1-86 Trip Speed Low [RPM] (except when starting or stopping) the frequency converter trips.

ALARM 50, AMA calibration failed

Contact the Danfoss supplier or service department.
ALARM 51, AMA check $U_{\text {nom }}$ and $I_{\text {nom }}$
The settings for motor voltage, motor current, and motor power are wrong. Check the settings in parameters 1-20 to 1-25.

ALARM 52, AMA low Inom
The motor current is too low. Check the settings.
ALARM 53, AMA motor too big
The motor is too big for the AMA to operate.

ALARM 54, AMA motor too small

The motor is too small for the AMA to operate.
ALARM 55, AMA Parameter out of range
The parameter values of the motor are outside of the acceptable range. AMA will not run.
ALARM 56, AMA interrupted by user
The user has interrupted the AMA.
ALARM 57, AMA internal fault
Try to restart AMA again. Repeated restarts may over heat the motor.

ALARM 58, AMA internal fault

Contact your Danfoss supplier.

WARNING 59, Current limit

The current is higher than the value in 4-18 Current Limit. Ensure that motor data in parameters 1-20 through 1-25 are set correctly. Increase the current limit, if necessary. Be sure that the system can operate safely at a higher limit.

WARNING 60, External interlock

A digital input signal indicates a fault condition external to the frequency converter. An external interlock has commanded the frequency converter to trip. Clear the external fault condition. To resume normal operation, apply 24 V DC to the terminal programmed for external interlock. Reset the frequency converter.

WARNING 62, Output frequency at maximum limit The output frequency has reached the value set in 4-19 Max Output Frequency. Check the application to determine the cause. Possibly increase the output frequency limit. Be sure the system can operate safely at a higher output frequency. The warning clears when the output drops below the maximum limit.

WARNING/ALARM 65, Control card over temperature The cutout temperature of the control card is $80^{\circ} \mathrm{C}$.

Troubleshooting

- Check that the ambient operating temperature is within limits
- Check for clogged filters
- Check fan operation
- Check the control card

WARNING 66, Heat sink temperature low

The frequency converter is too cold to operate. This warning is based on the temperature sensor in the IGBT module.
Increase the ambient temperature of the unit. A trickle amount of current can be supplied to the frequency converter whenever the motor is stopped by setting 2-00 DC Hold/Preheat Current at 5\% and 1-80 Function at Stop.

ALARM 67, Option module configuration has changed One or more options have either been added or removed since the last power-down. Check that the configuration change is intentional and reset the unit.

ALARM 68, Safe Stop activated

Loss of the 24 V DC signal on terminal 37 has caused the unit to trip. To resume normal operation, apply 24 V DC to terminal 37 and reset the unit.

ALARM 69, Power card temperature

The temperature sensor on the power card is either too hot or too cold.

Troubleshooting

- Check that the ambient operating temperature is within limits.
- Check for clogged filters.
- Check fan operation.
- Check the power card.

ALARM 70, Illegal frequency converter configuration

The control card and power card are incompatible. Contact the supplier with the type code of the unit from the nameplate and the part numbers of the cards to check compatibility.

ALARM 71, PTC 1 safe torque off

Safe torque off has been activated from the MCB 112 PTC thermistor card (motor too warm). Normal operation can resume when the MCB 112 applies 24 V DC to T-37 again (when the motor temperature reaches an acceptable level) and when the digital input from the MCB 112 is deactivated. When that happens, a reset signal is sent (via Bus, Digital I/O, or by pressing [RESET]).

ALARM 72, Dangerous failure

Safe torque off with trip lock. The dangerous failure alarm is issued if the combination of safe torque off commands is unexpected. This occurs if the MCB 112 VLT PTC Thermistor Card enables $\mathrm{X} 44 / 10$ but safe torque off is not enabled. Furthermore, if the MCB 112 is the only device using safe torque off (specified through selection [4] or [5]

General Specifications and ...
in 5-19 Terminal 37 Digital Input), an unexpected combination is activation of safe torque off without the X44/10 being activated. Table 8.34 summarizes the unexpected combinations that lead to Alarm 72. Note that if $X 44 / 10$ is activated in selection 2 or 3 , this signal is ignored. However, the MCB 112 is still able to activate safe torque off.

ALARM 80, Drive initialised to default value

Parameter settings are initialised to default settings after a manual reset. Reset the unit to clear the alarm.

ALARM 92, No flow

A no-flow condition has occurred. 22-23 No-Flow Function is set for alarm. Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 93, Dry pump

A no-flow condition in the system with the frequency converter operating at high speed may indicate a dry pump. 22-26 Dry Pump Function is set for alarm.
Troubleshoot the system and reset the frequency converter after clearing the fault.

ALARM 94, End of curve

Feedback is lower than the set point. This may indicate leakage in the system. 22-50 End of Curve Function is set for alarm. Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 95, Broken belt

Torque is below the torque level set for no load, indicating a broken belt. 22-60 Broken Belt Function is set for alarm.
Troubleshoot the system and reset the frequency converter after the fault has been cleared.

ALARM 96, Start delayed

Motor start has been delayed due to short-cycle protection. 22-76 Interval between Starts is enabled.
Troubleshoot the system and reset the frequency converter after the fault has been cleared.

WARNING 97, Stop delayed

Stopping the motor has been delayed due to short cycle protection. 22-76 Interval between Starts is enabled.
Troubleshoot the system and reset the frequency converter after the fault has been cleared.

WARNING 98, Clock fault

Time is not set or the RTC clock has failed. Reset the clock in 0-70 Date and Time.

WARNING/ALARM 104, Mixing fan fault

The fan monitor checks that the fan is spinning at drive power-up or whenever the mixing fan is turned on. If the fan is not operating, then the fault is annunciated. The mixing-fan fault can be configured as a warning or an alarm trip by 14-53 Fan Monitor.

Troubleshooting

Cycle power to the frequency converter to determine if the warning/alarm returns.

WARNING 200, Fire mode

This indicates the frequency converter is operating in fire mode. The warning clears when fire mode is removed. See the fire mode data in the alarm log.

WARNING 201, Fire mode was active

This indicates the frequency converter had entered fire mode. Cycle power to the unit to remove the warning. See the fire mode data in the alarm log.

WARNING 202, Fire mode limits exceeded

While operating in fire mode one or more alarm conditions have been ignored which would normally trip the unit. Operating in this condition voids unit warranty. Cycle power to the unit to remove the warning. See the fire mode data in the alarm log.

WARNING 203, Missing motor
With a frequency converter operating multi-motors, an under-load condition was detected. This could indicate a missing motor. Inspect the system for proper operation.

WARNING 204, Locked rotor
With a frequency converter operating multi-motors, an overload condition was detected. This could indicate a locked rotor. Inspect the motor for proper operation.

WARNING 250, New spare part

A component in the frequency converter has been replaced. Reset the frequency converter for normal operation.

WARNING 251, New typecode

The power card or other components have been replaced and the typecode changed. Reset to remove the warning and resume normal operation.
Index Brake resistors, ordering numbers 72
Braking. 198
A Branch circuit protection. 93
Abbreviations. 8
Building Management System.
Access, control terminals. 94
Accessories 41
Accessory bag control terminals 63
Acoustic noise 184
Advanced Cascade Controller, MCO 102 46
Aggressive environments 13
Air humidity 13
Airborne interference 30
Airflow 83
Alarm word 193
Alarm/warning code list. 191
Alarms. 188
Aluminum conductors. 92
AMA. 141, 197, 200
Analog I/O option MCB 109 44
Analog I/O selection 44
CE Conformity and Labelling. 12
Analog inputs. 9
Analog outputs, terminal X30/5+8 42
Analog signal. 196
Analog voltage inputs, terminal X30/10-12 42Analogue inputs.181, 196
Analogue output. 181
Approvals. 12
Automatic adaptations to ensure performance. 187
Automatic Motor Adaptation 141
Automatic Motor Adaptation (AMA) 133
Available literature. 7
B
Back channel cooling kit in Rittal enclosures, installation. 50
50Back channel cooling kits
Back cooling 83
Basic cascade controller 46
BASIC cascade controller 143
Battery back-up of clock function. 44
Better control. 16
Brake chopper. 72
Brake function 37
Brake power 9, 37
Brake resistor. 37
Brake resistor cabling 37Brake resistors4744
C
Cable clamp. 137
Cable clamps 135
Cable EMC. 137
Cable entry points. 87
Cable Entry Points. 85
Cable length. 92
Cable lengths 181
Cable-length. 103, 129
Cabling. 103, 127
Cascade controller 144, 145
Cascade controller option 46
Cascade Controller option. 46
CE Conformity. 12
CE Labelling 12
Circuit breakers 131
Closed loop controller, tuning 29
Closed loop PID control, Example 27
Coasting 8, 163, 164
Code list, alarm/warning. 191
Commercial environment, emission requirements. 31
Communication option. 198
Conducted emission 32
Configurator. 57
Connect a PC to the unit. 134
Connection to Mains 90
Connections Electrical 102
Connections power 12-pulse drives. 127
Connections, power. 103
Constant torque applications (CT mode) 186
Contactor 146
Control board. 63
Control cable length 96
Control cable terminals. 94
Control cables. 96, 97, 99, 135
Control card performance 183
Control card, 10 V DC output. 183
Control card, 24 V DC output. 182
Control Card, RS-485 serial communication. 181
Control card, USB serial communication. 183
Control characteristics 183
Control Principle 18
Control structure closed loop 23
Control structure open loop. 22
Control terminals. 94
Control Terminals 18
Control Word 162
Cooling83,186
Copyright, limitation of liability and revision rights
13
13
EMC Directive 2004/108/EC
EMC Directive 2004/108/EC 30
EMC emissions$\operatorname{Cos} \varphi$ compensation
Cross sections 18
Ethernet IP 63
Cross-section 92, 103, 129
Current rating 196
D
Database error codes 159
DC brake 163
196
91
De-coupling plate
Definitions 8
Derating for Low Air Pressure 185
Derating for running at low speed. 186
DeviceNet. 62
Digital input 197
182
Digital inputs
42
Digital output 182
Digital outputs, terminal X30/5-7 42
Discharge time 11
Disconnect $54,107,110,112,115,119,121,130$
Disposal instruction 12
Drive Configurator 57
DU/dt filters 49, 71
Duct cooling 83
E
Earth connection. 90
Earth leakage current 135
Earth Leakage Current 35
Earthing 137
Earthing, screened/armoured control cables. 137
Efficiency143, 184
Electrical installation 92, 96
Electrical installation, EMC guidelines 135
Electrical noise 129
EMC directive (2004/108/EC), the 127 Energy savings, clear advantage.
EMC precautions 135, 148
EMC requirements 31

EMC test results

EMC test results 32 32
EMC use of correct cables.
EMC use of correct cables. 137 137
Enclosure. 167, 183
Energy savings 15 140
Equalising cable. 137
Extended Cascade Controller MCO 101 46
Extended status word. 195
Extended status word 2. 195
External 24 V DC supply. 44
External fan supply 129
External temperature monitoring 56
Extreme running conditions 37
F
Fans
Fans 83
Fans, external power supply 129
FC Profile. 162
Feedback. 199, 201
Filter. 71
Filters 63,69
Final set-up and test 133
Fixed speed pump 46
Follower drive 46
Freeze output 8
Frequency converter with Modbus RTU 155
Function codes supported by Modbus RTU. 159
Fuses. 93, 199
Fusing 103, 127
G
Galvanic isolation 35
General considerations 81, 82
Generic emission standards 31
Gland conduit entry 12-pulse 87
Gland_Conduit_Entry 6-Pulse 85
H
Harmonic filter. 63
Harmonics emission requirements. 33
Harmonics emission, general Aspects 32
Harmonics test results (emission) 33
Load drive settings 134
Harmonics Test Results (Emission) 33
Heater. 54
High overload $166,167,168,169,170,171,172,174,175$, $176,177,178,179$
High Overload 173
High voltage 11
Hold output frequency 163
M
I
I/Os for set point inputs 44
IEC emergency stop with Pilz safety relay 56
Immunity requirements 34
Index (IND) 152
Industrial environment, emission requirements 31
Inertia, moment of 38
Input filters 48
Input plate options, installation of 53
Input terminals 196
Installation Electrical 102
Installation pedestal 76
Installation site, planning 78
Insulation resistance monitor (IRM) 56
Interconnect diagram 97
Interconnect diagram D-frame 20
Interconnect diagram E-frame 21
Interconnect diagram F-frame 21
Intermediate circuit 37, 184, 185
J
Jog. 8, 163
L
Label nameplate 78
Laws of proportionality. 15
LCP 8, 9, 48, 144
LCP 101 62
LCP 102 62
LCP cable 62
LCP kit. 62
Leakage current 11
Leakage Current 35
LED indications. 192
Lifting, frequency converter. 79
Lifting, use lifting bar. 79
Line Distortion 35
Load Share. 54
Load sharing. 11
Loadsharing 167, 173, 174
Local (Hand On) control 22
Low-voltage directive (2006/95/EC), the 12
Machinery directive (2006/42/EC), the. 12
Mains contactor. 131
Mains disconnects. 130
Mains plug connector. 90
Mains shield for frequency converters, installation of.. 54
Mains supply. 10
Mains supply (L1, L2, L3) 180
Manual motor starters. 56
Master drive 46
Maximum cable size...... 166, 167, 168, 169, 170, 171, 172, 175,$176,177,178,179$
Maximum input current. $166,167,168,169,170,171,172$,$173,174,175,176,177,178,179$
MCA 101 62
MCA 104 62
MCA 108 62
MCB 101 62
MCB 105 62
MCB 107 62
MCB 109 62
MCB 112. 55
MCB 113 55
MCB 114 62
MCF 103 62
MCO 101 62
MCO 102 62
MCT 10. 134
MCT 10 Set-up Software 134
MCT 31 135
Mechanical dimensions. 73,74
Mechanical installation 73
Mechanical mounting 76
Modbus control word. 158
Modbus message structure. 155
Modbus Protocol 155
Modbus RTU. 154, 155
Modbus RTU, frequency converter with 155
Modbus status word 158
Motor cable connection 91
Motor cables 91, 135
Motor current. 200
Motor data 197, 200
Motor name plate 133
Motor output 180
Motor parameters 141
Motor phases. 37
Motor power. 200
Motor protection. 180
Motor starter 144
Motor thermal protection 38,164
Motor voltage 185
Multi-zone control 44
N
Name plate data 133
NAMUR 55
Network connection 150
Ni1000 temperature sensor 44
Normal overload.... 166, 167, 168, 169, 170, 171, 172, 173, 174,$175,176,177,178,179$
0
Open loop mode 46
Option. 43
Options 41
Options and accessories, ordering numbers 62
Options F-Frame 55
Ordering Advanced Harmonic Filters. 63
Ordering numbers 57
Ordering numbers, brake resistors 72
Ordering numbers: Options and accessories. 62
Ordering, Sine-Wave filters 69
Output current 166, 167, 168, 169, 170, 171, 172, 173, 174,$175,176,177,178,179,196$
Output filters 49
Output performance (U, V, W) 180
Outputs for actuators 44
Outside installation/NEMA 3R kit for rittal enclosures 51
Over-current protection 93
P
Parameter values. 160
Pay back period 15
PC software tools. 134
Peak voltage on motor 185
Pedestal 76,77
Pedestal, installation on 52
PELV 35
Phase loss 196
PID adjustment, manual. 29
Pilz Relay. 56
Planning, installation site. 78
PLC. 137
Potentiometer Reference. 141
Power connections 103
Power connections, 12-pulse frequency converters 127
Power factor. 10
Power factor correction. 16
Power loss 167, 169
Precautions EMC 135
Preparing gland plates, cables 90
Principle diagram 44
Profibus 62
Profibus DP-V1 134
Profibus D-Sub 9 62
Programming 196
Programming order. 28
Protection 13, 35
Protection and features 180
Protocol overview. 149
Pt1000 temperature sensor. 44
Public supply network 33
Pulse inputs 182
Pulse Start/Stop 140
Pump staging with lead pump alternation 144
R
Radiated emission. 32
Radiated interference. 30
Radio interference. 30
Rated motor speed 8
RCD. 9
RCD cut-off frequency 36
RCD F-Frame Option 55
RCD, using 36
Read holding registers (03 HEX) 161
Real-time clock (RTC) 45
Receiving frequency converter. 78
Reference handling 27
Regeneration 54,123
Relay Built-in relay... 143
Relay 144
$1 .$. 146
2 146
Relay Option 43
Relay outputs 132, 182
Remote (Auto On) control. 22
Reset 196, 201
Residential environment, emission requirements 31
Residual current device 139
Rise time 185
RS-485. 148
RS-485 bus connection 133
Ruggedized Printed Circuit Boards 54
S
Safe Torque Off. 14, 100
Safe_Torque_Off F-Frame Option. 56
Safety 12
Safety earth connection 135
Safety High-Voltage Test 135
Safety requirements, mechanical installation 77
Save drive settings 134
Screened. 97
Screening 103, 129
Screening, cables. 92, 103, 129
Serial communication 138, 183
Serial communication port 9
Set speed limit and ramp time 133
Shielding 129
Short circuit. 197
Short circuit protection 93
Side-by-side installation 76
Signal Isolation 35
Sine-wave filter. 91, 103, 129
Sine-wave filters. 49
Sleep mode. 144
Smart logic control. 142
see also SLC
Smart Logic Control 141
Soft-starter 17
Software version 12
Software versions 63
Space 81
Space heaters and thermostat 55
Specifications Air Flow. 83
Star/delta starter 17
Start/Stop 140
Status Word 164
STO. 14, 100
Successful AMA 133
Supply voltage 199
Surroundings 183
Switches S201, S202 and S801 101
Switching frequency 92, 103, 129, 196
System
Operation 144
Status 144
T
Telegram length (LGE) 150
Terminal blocks 62
Terminal locations. 117
Terminal X30/10-12, analog voltage inputs 42
Terminal X30/1-4, digital inputs 42
Terminal X30/5 +8 , analog outputs. 42
Terminal X30/5-7, digital outputs 42
Terminals Control 94
Test results, EMC 32
Thermistor. 10, 197
Torque 102
Torque characteristics 180
Torque Settings 102
Transmitter/sensor inputs 44
Trip. 144
Troubleshooting 188, 196
Type code string 57
U
Unintended motor rotation 12
Unintended start 11
Unpacking 79
Unsuccessful AMA. 133
USB Cable 62
USB Connection 94
VVariable (Quadratic) torque applications (VT)186
Variable control, flow and pressure. 16
Variable speed pumps 46
Varying flow over one year. 15
Vibration and shock. 14

Index
Voltage imbalance 196
Voltage level. 182
VVC+ 10
W
Warning word 194
Warnings 188
Weight $167,169,173,174,175,176,177,178,179$
What Is Covered? 12
Windmilling 12
Wire access 81
Wiring. 145
Wiring diagram
Fixed variable speed pump. 146
Lead pump alternation. 146
Wiring diagram D-frame 20
Wiring diagram E-frame 21
Wiring diagram F-frame 21
Wiring example, basic. 95

www.danfoss.com/drives

Danfoss can accept no responsibility for possible errors in catalogues, brochures and other printed material. Danfoss reserves the right to alter its products without notice. This also applies to products already on order provided that such alterations can be made without subsequential changes being necessary in specifications already agreed. All trademarks in this material are property of the respective companies. Danfoss and the Danfoss logotype are trademarks of Danfoss A/S. All rights reserved.

[^13]
[^0]: Table 2.1 Discharge Time

[^1]: Table 5.2 Legend to Table 5.1

[^2]: Table 5.5 Heatsink and Front Channel Airflow

[^3]: Illustration 5.28 D1h, Bottom View

[^4]: Illustration 5.32 E1, Bottom View

[^5]: Table 5.8 525-690 V, Fuse Recommendations, Frame Sizes D, E and F

[^6]: Illustration 5.51 Interconnect Diagram for D-frames

[^7]: | 1 | Ground Terminals |
 | :--- | :--- |

[^8]: Illustration 5.67 Terminal Locations, D6h with Contactor Option

[^9]: Illustration 5.70 Terminal Locations, D7h with Disconnect Option

[^10]: Illustration 5.73 Terminal Locations, D8h with Contactor and Disconnect Options

[^11]: Illustration 5.79 IP00 Enclosure Power Connection Positions

[^12]: Illustration 7.9 Text Block

[^13]: Danfoss A/S
 Ulsnaes 1
 DK-6300 Graasten
 www.danfoss.com/drives

